تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,773 |
تعداد دریافت فایل اصل مقاله | 97,231,935 |
Effect of edible organic acids (ascorbic, citric, malic, and tartaric) on the rheological behavior of xanthan gum dispersion | ||
Journal of Food and Bioprocess Engineering | ||
دوره 7، شماره 1، آبان 2024، صفحه 65-71 اصل مقاله (1.3 M) | ||
نوع مقاله: Original research | ||
شناسه دیجیتال (DOI): 10.22059/jfabe.2024.376018.1173 | ||
نویسندگان | ||
Fakhreddin Salehi* 1؛ Maryam Tashakori2؛ Kimia Samary2 | ||
1Associate Professor, Department of Food Science and Technology, Faculty of Food Industry, Bu-Ali Sina University, Hamedan, Iran | ||
2MSc Student, Department of Food Science and Technology, Faculty of Food Industry, Bu-Ali Sina University, Hamedan, Iran | ||
چکیده | ||
The present study aims to determine the influence of edible organic acids (ascorbic, citric, malic, and tartaric) at two concentrations (0.5, and 1 %) on the viscosity and rheological behavior of xanthan gum dispersion (0.2%, w/v). The results of this study showed that the apparent viscosity of xanthan gum dispersion reduced as the shear rate (SR) increased (shear-thinning behavior). Furthermore, the apparent viscosity of the xanthan gum dispersion decreased as the organic acid concentration increased. The highest decrease in viscosity was related to 1% citric acid and the lowest was related to 0.5% ascorbic acid. The rheological behavior of xanthan gum dispersion was successfully modeled using Power law, Bingham, Herschel-Bulkley, and Casson models, and the Power law model was the best one for describing the behavior of xanthan gum dispersion containing edible organic acids. The Power law model showed good performance with the maximum r-value (mean r-value=0.993) and least sum of squared error (SSE) values (mean SSE value=0.115) and root mean square error (RMSE) values (mean RMSE value=0.046) for all samples. The consistency coefficient values of the samples (Power law and Herschel-Bulkley models) reduced as the acid percent was increased. The sample containing 1% citric acid had the lowest consistency coefficient and the sample containing 0.5% ascorbic acid had the highest consistency coefficient. Based on the results of this research, the use of xanthan gum in food products containing high concentrations of citric acid is not recommended. | ||
کلیدواژهها | ||
Consistency coefficient؛ Herschel-Bulkley؛ Power law؛ Xanthan gum | ||
مراجع | ||
References Agoub, A.A., Smith, A.M., Giannouli, P., Richardson, R.K. & Morris, E.R. (2007). “Melt-in-the-mouth” gels from mixtures of xanthan and konjac glucomannan under acidic conditions: A rheological and calorimetric study of the mechanism of synergistic gelation. Carbohydrate Polymers 69(4), 713-724. https://doi.org/10.1016/j.carbpol.2007.02.014 Bak, J. & Yoo, B. (2023). Rheological characteristics of concentrated ternary gum mixtures with xanthan gum, guar gum, and carboxymethyl cellulose: Effect of NaCl, sucrose, pH, and temperature. International Journal of Biological Macromolecules 253, 126559. https://doi.org/10.1016/j.ijbiomac.2023.126559 Cancella, M.J., Cerqueira, A.F.L.W., Teodoro, L.d.C., Pereira, J.R., Ludwig, Z.M.d.C., Anjos, V.d.C., Denadai, Â.M.L., Húngaro, H.M. & Rodarte, M.P. (2024). Xanthan gum produced from milk permeate and deproteinized cheese whey: A comparative analysis with commercial xanthan gums. Biocatalysis and Agricultural Biotechnology 56, 103053. https://doi.org/10.1016/j.bcab.2024.103053 Agoub, A.A., Smith, A.M., Giannouli, P., Richardson, R.K. & Morris, E.R. (2007). “Melt-in-the-mouth” gels from mixtures of xanthan and konjac glucomannan under acidic conditions: A rheological and calorimetric study of the mechanism of synergistic gelation. Carbohydrate Polymers 69(4), 713-724. https://doi.org/10.1016/j.carbpol.2007.02.014 Bak, J. & Yoo, B. (2023). Rheological characteristics of concentrated ternary gum mixtures with xanthan gum, guar gum, and carboxymethyl cellulose: Effect of NaCl, sucrose, pH, and temperature. International Journal of Biological Macromolecules 253, 126559. https://doi.org/10.1016/j.ijbiomac.2023.126559 Cancella, M.J., Cerqueira, A.F.L.W., Teodoro, L.d.C., Pereira, J.R., Ludwig, Z.M.d.C., Anjos, V.d.C., Denadai, Â.M.L., Húngaro, H.M. & Rodarte, M.P. (2024). Xanthan gum produced from milk permeate and deproteinized cheese whey: A comparative analysis with commercial xanthan gums. Biocatalysis and Agricultural Biotechnology 56, 103053. https://doi.org/10.1016/j.bcab.2024.103053 Cevoli, C., Balestra, F., Ragni, L. & Fabbri, A. (2013). Rheological characterisation of selected food hydrocolloids by traditional and simplified techniques. Food Hydrocolloids 33(1), 142-150. https://doi.org/10.1016/j.foodhyd.2013.02.022 Dogsa, I., Tomšič, M., Orehek, J., Benigar, E., Jamnik, A. & Stopar, D. (2014). Amorphous supramolecular structure of carboxymethyl cellulose in aqueous solution at different pH values as determined by rheology, small angle X-ray and light scattering. Carbohydrate Polymers 111, 492-504. https://doi.org/10.1016/j.carbpol.2014.04.020 Hayta, M., Dogan, M. & Aslan Türker, D. (2020). Rheology and Salehi et al. JFBE 7(1): 65-71,2024 71 microstructure of galactomannan–xanthan gum systems at different pH values. Journal of Food Process Engineering 43(12), e13573. https://doi.org/10.1111/jfpe.13573 Liang, W., Deng, F., Wang, Y., Yue, W., Hu, D., Rong, J., Liu, R., Xiong, S. & Hu, Y. (2024). Interfacial behavior and micro-rheological performance of Pickering emulsions co-stabilized by β- cyclodextrin and xanthan gum. Food Hydrocolloids 149, 109611. https://doi.org/10.1016/j.foodhyd.2023.109611 Martins, D., Dourado, F. & Gama, M. (2023). Effect of ionic strength, pH and temperature on the behaviour of re-dispersed BC:CMC - A comparative study with xanthan gum. Food Hydrocolloids 135, 108163. https://doi.org/10.1016/j.foodhyd.2022.108163 Mota, G.P. & Pereira, R.G. (2022). A comparison of the rheological behavior of xanthan gum and diutan gum aqueous solutions. Journal of the Brazilian Society of Mechanical Sciences and Engineering 44(4), 117. https://doi.org/10.1007/s40430-022-03406-0 Nor Hayati, I., Wai Ching, C. & Rozaini, M.Z.H. (2016). Flow properties of o/w emulsions as affected by xanthan gum, guar gum and carboxymethyl cellulose interactions studied by a mixture regression modelling. Food Hydrocolloids 53, 199-208. https://doi.org/10.1016/j.foodhyd.2015.04.032 Nsengiyumva, E.M. & Alexandridis, P. (2022). Xanthan gum in aqueous solutions: Fundamentals and applications. International Journal of Biological Macromolecules 216, 583-604. https://doi.org/10.1016/j.ijbiomac.2022.06.189 Palaniraj, A. & Jayaraman, V. (2011). Production, recovery and applications of xanthan gum by Xanthomonas campestris. Journal of Food Engineering 106(1), 1-12. https://doi.org/10.1016/j.jfoodeng.2011.03.035 Safdar, B., Pang, Z., Liu, X., Rashid, M.T. & Jatoi, M.A. (2023). Structural characterization, physicochemical and rheological characteristics of flaxseed gum in comparison with gum Arabic and xanthan gum. Journal of Food Measurement and Characterization 17(3), 2193-2203. https://doi.org/10.1007/s11694-022-01750-2 Salehi, F. (2020). Effect of common and new gums on the quality, physical, and textural properties of bakery products: A review. Journal of Texture Studies 51(2), 361-370. https://doi.org/10.1111/jtxs.12482 Salehi, F. & Inanloodoghouz, M. (2023). Rheological properties and color indexes of ultrasonic treated aqueous solutions of basil, Lallemantia, and wild sage gums. International Journal of Biological Macromolecules 253, 127828. https://doi.org/10.1016/j.ijbiomac.2023.127828 Salehi, F. & Inanloodoghouz, M. (2024). Effects of ultrasonic intensity and time on rheological properties of different concentrations of xanthan gum solution. International Journal of Biological Macromolecules 263, 130456. https://doi.org/10.1016/j.ijbiomac.2024.130456 Salehi, F., Razavi Kamran, H. & Goharpour, K. (2023). Production and evaluation of total phenolics, antioxidant activity, viscosity, color, and sensory attributes of quince tea infusion: Effects of drying method, sonication, and brewing process. Ultrasonics Sonochemistry 99, 106591. https://doi.org/10.1016/j.ultsonch.2023.106591 Salehi, F., Samary, K. & Tashakori, M. (2024). Influence of organic acids on the viscosity and rheological behavior of guar gum solution. Results in Engineering 22, 102307. https://doi.org/10.1016/j.rineng.2024.102307 Wen, M., Ni, X., Xiao, W., Li, Y. & Gao, Z. (2024). Influence of dispersion media on the rheology and oral tribology of the konjac glucomannan/xanthan gum thickener. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694-024-02508-8 Yousefi, A., Elmarhoum, S., Khodabakhshaghdam, S., Ako, K. & Hosseinzadeh, G. (2022). Study on the impact of temperature, salts, sugars and pH on dilute solution properties of Lepidium perfoliatum seed gum. Food Science & Nutrition 10(11), 3955- 3968. https://doi.org/10.1002/fsn3.2991 | ||
آمار تعداد مشاهده مقاله: 94 تعداد دریافت فایل اصل مقاله: 71 |