تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,762 |
تعداد دریافت فایل اصل مقاله | 97,206,367 |
Deciphering Environmental History through Alder Rings: Dendroclimatological Exploration | ||
Pollution | ||
دوره 10، شماره 4، آذر 2024، صفحه 1162-1175 اصل مقاله (1.42 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2024.374564.2316 | ||
نویسندگان | ||
Alejandro Félix Taquire Arroyo1؛ Nora Haydee Quispe Bellido1؛ Ebed David Paredes Rodríguez2؛ Katia Elizabeth Andrade Linarez1؛ Eusebio German Peralta Julliri3؛ Jesus Esteban Castillo Machaca4؛ Yesica Magnolia Mamani Arpasi* 1 | ||
1Escuela Profesional de Ingenieria Ambiental y Forestal, Universidad Nacional de Juliaca, Av. Nueva Zelandia N° 631 Urb. La Capilla –Juliaca, Peru | ||
2Escuela Profesional de Ingeniería Ambiental y Forestal, Universidad Nacional de Juliaca, Av. Nueva Zelandia N° 631 Urb. La Capilla –Juliaca, Perú | ||
3Universidad Nacional de San Agustín de Arequipa | ||
4Escuela Profesional de Ingeniería Sanitaria y Ambiental, Universidad Andina Nestor Caceres Velázquez de Juliaca, Urbanización Taparachi Km 4.5 salida, Juliaca, Peru | ||
چکیده | ||
Tree rings in high mountain forests represent a valuable natural archive for climate reconstructions and understanding the impact of climate change on forest ecosystems. In this context, the dendroclimatic potential of Alnus acuminata (alder) was evaluated by selecting 25 trees from seven localities in the Mantaro Valley. Computational programs such as Image-Pro Plus, COFECHA, ARSTAN, Sigma Plot, and the IAWA Standard List were utilized. Densitometry, performed with the QTRS-01X equipment using X-ray technology, provided ring width and apparent density diagrams. Seven chronological periods were identified, covering a span of 37.5 years, with the years 1960-1966, 1972-1978, and 2004-2010 showing the greatest growth, and the years 1966-1970, 1980-1986, and 1999-2005 showing the least growth. Furthermore, the alder exhibited particular sensitivity to low winter temperatures in the higher altitude sampling areas. Samples from Colpar 12-A* and Paca 10-A* showed wall thicknesses of 4.39 and 4.60 µm, respectively, attributable to low temperatures. Additionally, a significant negative correlation was observed between minimum temperature and ring width index (r= -0.38, p<0.005) from 1972 to 2008. In terms of precipitation and ring width index, a positive correlation (r= 0.26, p<0.005) was evidenced from 1949 to 2009, positively influencing its development. These findings underscore the dendroclimatic potential of the species, contributing to the understanding of climatic history and the prediction of future conditions in development areas. | ||
کلیدواژهها | ||
A. acuminata؛ apparent density؛ chronology؛ dendroclimatic؛ time series | ||
مراجع | ||
Almonacid, P., Rojas-Badilla, M., LeQuesne, C., Muñoz-Salazar, T., & Christie, D. A. (2023). Dendroecological analysis of the remote endemic Nothomyrcia fernandeziana forests of Robinson Crusoe Island in the Southeast Pacific. Dendrochronologia, 81, 126129. https://doi.org/10.1016/j.dendro.2023.126129 Armijos, A., Alvarado, J., Quito, J., León, T., Guamán, L., & Pucha, D. (2017). Anatomía de la madera de diez especies forestales de bosque andino del sur del Ecuador. Cedamaz, 7, 83–95. Barrera-Jiménez, E., Castro-Veintimilla, J., Muñoz-Chamba, D., & Pucha-Cofrep, D. (2018). Variabilidad anatómica de la madera en cuatro especies forestales de diferentes procedencias al sur del Ecuador. Bosques Latitud Cero, 8(2), 16–29. Binda, G., Di Iorio, A., & Monticelli, D. (2021). The what, how, why, and when of dendrochemistry: (paleo)environmental information from the chemical analysis of tree rings. Science of The Total Environment, 758, 143672. https://doi.org/10.1016/J.SCITOTENV.2020.143672 Björklund, J., Seftigen, K., Fonti, P., Nievergelt, D., & von Arx, G. (2020). Dendroclimatic potential of dendroanatomy in temperature-sensitive Pinus sylvestris. Dendrochronologia, 60, 125673. https://doi.org/10.1016/j.dendro.2020.125673 Cyamweshi, A. R., Kuyah, S., Mukuralinda, A., & Muthuri, C. W. (2021). Potential of Alnus acuminata based agroforestry for carbon sequestration and other ecosystem services in Rwanda. Agroforestry Systems, 95(6), 1125–1135. https://doi.org/10.1007/s10457-021-00619-5 Cyamweshi, A. R., Muthuri, C. W., Kuyah, S., Mukuralinda, A., Mbaraka, R. S., & Sileshi, G. W. (2024). Pruning and green manure from Alnus acuminata improve soil health, and potato and wheat productivity in Rwanda. Agroforestry Systems, 98(2), 269–282. https://doi.org/10.1007/s10457-023-00904-5 Daly, A. (2024). Timber supply through time – Copenhagen waterfronts under scrutiny. Dendrochronologia, 83, 126164. https://doi.org/10.1016/J.DENDRO.2024.126164 Franco-ramos, O., Vázquez-selem, L., Stoffel, M., & Villanueva, J. (2018). Dendrogeomorphological potential of conifers on volcanoes of central Mexico. 39(2), 191–204. https://doi.org/10.4067/S0717-92002018000200191 Gautam, D., Basnet, S., Karki, P., Thapa, B., Ojha, P., & Poudel, U. (2020). A Review on Dendrochronological Potentiality of the Major Tree Species of Nepal. Journal of Forest Researcn: Open Acces, 9, 277. Hadad, M. A., Flores, D., Gallardo, V., Roig, F. A., González-Reyes, Á., & Chen, F. (2022). Dendroclimatic potential of the Adesmia pinifolia shrub growing at high altitude in the Andes foothills. Dendrochronologia, 72, 125919. https://doi.org/10.1016/j.dendro.2021.125919 Hagemans, K., Urrego, D. H., Gosling, W. D., Rodbell, D. T., Wagner-Cremer, F., & Donders, T. H. (2022). Intensification of ENSO frequency drives forest disturbance in the andes during the holocene. Quaternary Science Reviews, 294, 107762. https://doi.org/10.1016/j.quascirev.2022.107762 Lipatkin, V., Rumyantsev, D., Vorobyeva, N., & Sirotova, A. (2023). Dendroclimatic studies of aspen growth in Moscow. E3S Web of Conferences, 411, 02046. https://doi.org/10.1051/e3sconf/202341102046 Maillet, J., Nehemy, M. F., Mood, B., Pappas, C., Bonsal, B., & Laroque, C. (2022). A multi-scale dendroclimatological analysis of four common species in the southern Canadian boreal forest. Dendrochronologia, 72, 125936. Marcelo-Peña, J. L., Roig, F. A., Goodwin, Z. A., & Tomazello-Filho, M. (2020). Characterizing growth rings in the trees of Perú: A wood anatomical overview for potential applications in dendroecological-related fields. Dendrochronologia, 62, 125728. https://doi.org/10.1016/j.dendro.2020.125728 Mitchell, T. J., Knapp, P. A., & Patterson, T. W. (2020). The importance of infrequent, high-intensity rainfall events for longleaf pine (Pinus palustris Mill.) radial growth and implications for dendroclimatic research. Trees, Forests and People, 1, 100009. https://doi.org/10.1016/j.tfp.2020.100009 Muqarrab, R., Hussain, T., Rizwan, M., Khan, H., Hussain, R., Butt, A., Shaikh, G., Hussain, M., Muhammad, A., Ullah, S., Khalid, M., Ashraf, T., & Sajawal, M. (2023). A Study On Dendroclimatic Potential Of Chir Pine (Pinus Roxburghii) Grown In Bahali District Mansehra Kp Pakistan. Journal of Survey in Fisheries Sciences, 10(2), 1022–1028. Olmedo, G. M., Hornink, B., Arenhardt, B. B., Nunes, A. J., de Oliveira, C., Amaral, I. S. do, Santos, M. R. dos, Fontana, C., & Oliveira, J. M. de. (2023). Growth dynamic and climate signals on abandoned plantation of Pinus elliottii in Southern Brazil: A dendrochronological contribution. Dendrochronologia, 82, 126136. https://doi.org/10.1016/j.dendro.2023.126136 Pérez, J., Boyero, L., Tuñón, A. R., Checa, B., Correa-Araneda, F., Guerra, A., Tuñón, A., Castillo, D., Pérez, E., García, G., Rodríguez, R., & Cornejo, A. (2023). Agricultural impacts on lowland tropical streams detected through leaf litter decomposition. Ecological Indicators, 154, 110819. https://doi.org/10.1016/j.ecolind.2023.110819 Portal-Cahuana, L. A., Fontana, C., Assis-Pereira, G., Groenendijk, P., Roig, F. A., & Tomazello-Filho, M. (2023). Thirty-four years of dendrochronological studies in Perú: A review of advances and challenges. Dendrochronologia, 78, 126058. https://doi.org/10.1016/J.DENDRO.2023.126058 Quesada-Román, A., Antonio Ballesteros-Cánovas, J., St George, S., & Stoffel, M. (2022). Tropical and subtropical dendrochronology: Approaches, applications, and prospects. Ecological Indicators, 144, 1470–160. https://doi.org/10.1016/j.ecolind.2022.109506 Requena-Rojas, E. (2015). Dendrocronología de Alnus acuminata en el bosque reservado de San Pedro de Saño, Huancayo. Apuntes de Ciencia & Sociedad, 05(02), 249–256. Rodriguez, D. R. O., Alves, E. E. N., Rocha, P. A., Costa, L. M., & Tomazello, M. (2015). Dendrochronology application: Potential of the X- ray microdensitometric and μ-EDXRF in tree-rings physical and chemical analysis of Pinus taeda wood. 20Th INternational Nondestructive Testing and Evaluation of Wood Symposium, 1. https://doi.org/10.1039/C5JA00348B Saucedo, J., Oliva, M., Maicelo, J. L., Quispe, H., & Meléndez, J. B. (2020). Silvopastoral arrangements with tree species Alnus acuminata (alder) and its effect on the environmental factors of livestock systems[Arreglos silvopastoriles con especie arbórea Alnus acuminata (aliso) y su efecto sobre los factores ambientales de sistem. Revista de Investigaciones Agropecuarias, 46(3), 323–328. Scherrer, D., Esperon-Rodriguez, M., Beaumont, L. J., Barradas, V. L., & Guisan, A. (2021). National assessments of species vulnerability to climate change strongly depend on selected data sources. Diversity and Distributions, 27(8), 1367–1382. https://doi.org/10.1111/ddi.13275 Semenyak, N., & Dolgova, E. (2023). Dendroclimatic signals in the pine and spruce chronologies in the Solovetsky Archipelago. Dendrochronologia, 77. https://doi.org/10.1016/j.dendro.2022.126029 Stajić, B., Kazimirovic, M., Dukic, V., & Radakovic, N. (2020). First Dendroclimatological Insight into Austrian Pine (Pinus nigra Arnold) Climate-Growth Relationship in Belgrade Area, Serbia. South-East European Forestry, 11(2), 127–134. https://doi.org/10.15177/SEEFOR.20-12 Tomazello, M., Lisi, C., Hansen, N., & Cury, G. (2004). Anatomical features of increment zones in different tree species in the State of São Paulo, Brazil. Scientia Forestalis, 66, 46–55. Vásquez, C., Dávila, M., Pablo, P., & Telenchana, N. (2017). First report of Oligonychus coffeae (Acari : Tetranychidae) on Alnus acuminata in the Andean region. Revista Mexicana de Biodiversidad, 88, 256–259. Weng, C., Bush, M. B., & Chepstow-lusty, A. J. (2004). Holocene changes of Andean alder (Alnus acuminata) in highland Ecuador and Peru. Journal of Quaternary Science, 19, 685–691. https://doi.org/10.1002/jqs.882 Wilson, R., Allen, K., Baker, P., Boswijk, G., Buckley, B., Cook, E., D’arrigo, R., Druckenbrod, D., Fowler, A., Grandjean, M., Krusic, P., & Palmer, J. (2021). Evaluating the dendroclimatological potential of blue intensity on multiple conifer species from Tasmania and New Zealand. Biogeosciences, 18(24), 6393–6421. https://doi.org/10.5194/bg-18-6393-2021 Worbes, M. (2002). One hundred years of tree-ring research in the tropics - A brief history and an outlook to future challenges. Dendrochronologia, 20(1–2), 217–231. https://doi.org/10.1078/1125-7865-00018 Zafirov, N., Panayotov, M., Tsvetanov, N., Nikolchova, I., & Trouet, V. (2020). Dendroclimatic analysis of Pinus peuce Griseb. at subalpine and treeline locations in Pirin Mountains, Bulgaria. Dendrochronologia, 61, 125703. https://doi.org/10.1016/j.dendro.2020.125703 | ||
آمار تعداد مشاهده مقاله: 123 تعداد دریافت فایل اصل مقاله: 273 |