![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 162 |
تعداد شمارهها | 6,578 |
تعداد مقالات | 71,072 |
تعداد مشاهده مقاله | 125,684,816 |
تعداد دریافت فایل اصل مقاله | 98,914,334 |
استفاده از روش یادگیری ماشین بهمنظور برآورد تبخیر و تعرق(مطالعه موردی: استان سمنان) | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 5، مرداد 1403، صفحه 781-797 اصل مقاله (3.65 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.371452.669652 | ||
نویسندگان | ||
حسام هروی1؛ علی اصغر ذوالفقاری* 2 | ||
1گروه بیابان زدایی، دانشکده کویر شناسی، دانشگاه سمنان، سمنان، ایران | ||
2گروه بیابان زدایی، دانشکده کویرشناسی، دانشگاه سمنان، سمنان، ایران | ||
چکیده | ||
تبخیر و تعرق (ET) در مناطق خشک و نیمهخشک از اهمیت زیادی برخوردار بوده و برآورد دقیق آن در برنامهریزی و مدیریت شیوههای آبیاری حائز اهمیت است. استان سمنان دارای تعداد محدودی ایستگاه سینوپتیک و تبخیرسنجی است که کمبود دادههای تبخیر و تعرق سبب شده که برآورد مکانی آن با مشکل مواجه گردد. در این مطالعه از محصول تبخیر و تعرق حاصل از دادههای بازتحلیل ERA5-Land به همراه متغیرهای کمکی ارتفاع و دما برای برآورد تبخیر و تعرق در منطقه موردمطالعه استفاده شد. همچنین بهمنظور برقراری ارتباط بین متغیرهای کمکی و دادههای تبخیر و تعرق از روش یادگیری ماشین جنگل تصادفی (RF) استفاده شد و نقشه تبخیر و تعرق در منطقه موردمطالعه با استفاده از مدل RF تهیه شد. دقت مدل RF در برآورد تبخیر و تعرق با استفاده از چهار معیار آماری شامل ضریب همبستگی (r)، مقدار اریبی (BIAS)، میانگین ریشه مربعات خطا (RMSE) و شاخص KGE مورد ارزیابی قرار گرفت. نتایج مرحله اعتبارسنجی، کارایی بالای مدل RF را نشان داد (R² = 0.95، 4.1-BIAS= ، RMSE = 98.6 و KGE = 0.92). همچنین مشخص شد عملکرد مدل RF در برآورد تبخیر و تعرق با استفاده از متغیرهای ورودی به وابستگی خطای مدل (BIAS) به توپوگرافی بستگی دارد و متغیر ارتفاع عامل مهمی در برآورد تبخیر و تعرق محسوب میگردد. نتایج این مطالعه نشان داد که استفاده از دادهکاوی و پردازش در محیط برنامهنویسی R، در مناطقی با تعداد محدود ایستگاه هواشناسی، برآورد دقیق میزان تبخیر و تعرق در مناطق خشک و نیمهخشک را ممکن میسازد. | ||
کلیدواژهها | ||
واژههای کلیدی: ارتفاع؛ دما؛ ERA5-Land؛ مدل جنگل تصادفی(RF) | ||
مراجع | ||
Abed, M., Imteaz, M.A., Ahmed, AN., & Huang YF. (2022). Modelling monthly pan evaporation utilising Random Forest and deep learning algorithms. Scientific Reports, 12(1), 1-29. https://dx.doi.org/10.1038/s41598-022-17263-3. Ahmadi, F., Mehdizadeh, S., Mohammadi, B., Bao Pham, Q., Doan, T.N.C., & Vo, N.D. (2021). Application of an artificial intelligence technique enhanced with intelligent water drops for monthly reference evapotranspiration estimation. Agricultural Water Management, 244, 106622. https://doi.org/10.1016/j.agwat.2020.106622. Amini, E., Zolfaghari, A.A., kaboli, S.H., & Rahimi, M. (2022). Estimation of Rainfall Erosivity Map in Areas with Limited Number of Rainfall Station (Case study: Semnan Province). Iranian Journal of Soil and Water Research, 53(9), 2027-2044. https://doi.org/ 10.22059/IJSWR.2022.343710.669279. (In Persian). Amjad, M., Yilmaz, M.T., Yucel, I., & Yilmaz K.K. (2020). Performance Evaluation of Satellite- and Model-Based Precipitation Products over Varying Climate and Complex Topography. Journal of Hydrology, 584, 124707. https://doi.org/10.1016/j.jhydrol.2020.124707. Bandhauer, M., Isotta, F., Lakatos, M., Lussana, C., Baserud, L., Izsak, B., Szentes, O., Tveito, O.E., & Frei, C. (2022). Evaluation of daily precipitation analyses in E-OBS (v19.0e) and ERA5 by comparison to regional high-resolusion datasets in European regions. International Journal of Climatology, 42(1), 727-747. https://doi.org/10.1002/joc.7269. Brust, C., Kimball, J.S., Maneta, M.P., Jencso, K., He, M., & Reichle, R.H. (2021). Using SMAP Level-4 soil moisture to constrain MOD16 evapotranspiration over the contiguous USA. Remote Sensing of Environment. 255(1), 112277. https://doi:10.1016/j.rse.2020.112277. Chen, J.M., Chen, X., Ju, W., Geng, X., & Zhang, X. (2005). Distributed hydrological model for mapping evapotranspiration using remote sensing inputs. Journal of Hydrology, 305(1-4), 15-39. https://doi.org/10.1016/j.jhydrol.2004.08.029. Chen, Z., Sun, S., Wang, Y., Wang, Q., & Zhang, X. (2020). Temporal convolution-network-based models for modeling maize evapotranspiration under mulched drip irrigation. Computers and Electronics in Agriculture, 169, 105206. https://doi.org/10.1016/j.compag.2019.105206. Crossett, C.C., Betts, A.K., Dupigny-Giroux, L.A.L., & Bomblies, A. (2020). Evaluation of daily precipitation from the ERA5 global reanalysis against GHCN observations in the northeastern United States. Climate, 8(12), 1-14. https://doi.org/ 10.3390/cli8120148. Cunha, A.C., Filho. L.R.A.G., Tanaka, A.A., Goes, B.C., & Putti, F.F. (2021). Influence of the estimated global solar radiation on the reference evapotranspiration obtained through the penman-monteith FAO 56 method. Agricultural Water Management, 243, 106491. https://doi.org/10.1016/j.agwat.2020.106491. Feng, Y., Cui, N., Gong, D., Zhang, Q., & Zhao, L. (2017). Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agricultural Water Management, 193, 163–173. https://doi.org/10.1016/j.agwat.2017.08.003. Guo, B., Zhang, D., Pei, L., Su, Y., Wang, X., Bian, Y., Zhang, D., Yao, W., Zhou, Z., & Guo, L. (2021). Estimating PM2.5 concentrations via random forest method using satellite, auxiliary, and ground-level station dataset at multiple temporal scales across China in 2017. Science of The Total Environment, 778, 146288. https://doi.org/10.1016/j.scitotenv.2021.146288. Gupta, H.V., Kling, H., Yilmaz, K., & Martinez, G. (2009). Decomposition of the mean squared error and NSE performance criteria: Implications for improving hydrological modelling. Journal of Hydrology, 377(1-2): 80-91. https://doi.org/10.1016/j.jhydrol.2009.08.003. Hameed, M.M., AlOmar, M.K., Razali, S.F.M., Khalaf, A.M.K., Baniya, W.J., Sharafati, A., & AlSaadi, M.A. (2021). Application of Artificial Intelligence Models for Evapotranspiration Prediction along the SouthernCoast of Turkey. Hindawi, 8850243. https://doi.org/10.1155/2021/8850243. Hamm, A., Arndt, A., Kolbe, C., Wang, X., Thies, B., Boyko, O., Reggiani, P., Scherer, D., Bendix, J., & Schneider, C. (2020). Intercomparison of gridded precipitation datasets over a sub-region of the Central Himalaya and the southwestern Tibetan plateau. Water, 12(11), 1-23. https://doi.org/10.3390/w12113271. Hengl, T., Nussbaum, M., Wright, M.N., Heuvelink, G.B., & Graler, B. (2018). Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ (Environmental Science), 6, 1-49. https://doi: 10.7287/peerj.preprints.26693v2. Herrera, S., Cardoso, R.M., Soares, P.M., Espirito-Santo, F., Viterbo, P., & Gutierrez, J.M. (2019). A new gridded dataset of daily precipitation and temperatures over Iberia. Earth System Science Data, 11(4), 1947–1956. https://doi.org/10.5194/essd-11-1947-2019. Kisi, O. (2016). Modeling reference evapotranspiration using three different heuristic regression approaches. Agricultural Water Management, 169, 162–172. https://doi.org/10.1016/j.agwat.2016.02.026. Kling, H., Fuchs, M., & Paulin, M. (2012). Runoff conditions in the upper Danube basin under an ensemble of climate change scenarios. Journal of Hydrology, 424-425, 264-277. https://doi.org/10.1016/j.jhydrol.2012.01.011. Knoben, W.J.M., Freer, J.E., & Woods, R.A. (2019). Technical note: Inherent benchmark or not? Comparing Nash–Sutcliffe and Kling–Gupta efficiency scores. Hydrology and Earth System Sciences, 23 (10), 4323–4331. https://doi.org/10.5194/hess-23-4323-2019. Krajewski, W.F., Ceynar, D., Demir, I., Goska, R., Kruger, A., Langel, C., Mantilla, R., Niemeier, J., Quintero, F., Seo, B.C., Small, S.J., Webber, L.J., & Young, N.C. (2017). Real-time flood forecasting and information system for the state of Iowa. Bulletin of the American Meteorological Society, 98(3), 539–554. https:// doi.org/ 10. 1175/BAMS-D- 15- 00243.1. Li, Y., Wang, W., Wang, G., & Tan, Q. (2022). Actual evapotranspiration estimation over the Tuojiang River Basin based on a hybrid CNN-RF model. Journal of Hydrology, 610, 127788. https://doi.org/10.1016/j.jhydrol.2022.127788 Rashid Niaghi, A., Hassanijalilian, O., & Shiri, J. (2021). Estimation of Reference Evapotranspiration Using Spatial and Temporal Machine Learning Approaches. Hydrology, 8(1), 1-15. https://doi.org/10.3390/hydrology8010025. Shiri, J. (2018). Improving the performance of the mass transfer-based reference evapotranspiration estimation approaches through a coupled wavelet-random forest methodology. Journal of Hydrology, 561, 737–750. https://doi.org/10.1016/j.jhydrol.2018.04.042. Silva Junior, J.C., Medeiros, V., Garrozi, C., Montenegro, A., & Goncalves, G.E. (2019). Random forest techniques for spatial interpolation of evapotranspiration data from Brazilian’ Northeast. Computers and Electronics in Agriculture, 166, 105017. https://doi.org/10.1016/j.compag.2019.105017. Strong, C., Khatri, K.B., Kochanski, A.K., Lewis, C.S., & Allen, L.N. (2017). Reference evapotranspiration from coarse-scale and dynamically downscaled data in complex terrain: Sensitivity to interpolation and resolution. Journal of Hydrology, 548, 406–418. https:// doi.org/ 10. 1016/j.jhydr ol. 2017. 02. 045. Torres, A.F., Walker, W.R., & McKee, M. (2011). Forecasting daily potential evapotranspiration using machine learning and limited climatic data. Agricultural Water Management, 98(4), 553-562. https://doi.org/10.1016/j.agwat.2010.10.012. Wang, S., Lian, J., Peng, Y., Hu, B., & Chen, H. (2019). Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China. Agricultural Water Management, 221, 220–230. https:// doi.org/ 10. 1016/j.agwat. 2019. 03. 027. Wang, Y., Zhang, Y., Yu, X., Jia, G., Liu, Z., Sun, L., Zheng, P., & Zhu, X. (2021). Grassland soil moisture fluctuation and its relationship with evapotranspiration. Ecological Indicators, 131, 108196. https://doi.org/10.1016/j.ecolind.2021.108196. Wilding, L.G. (1985, 30 Nov–1 Dec). Soil spatial variability: Its documentation, accommodation and implication to soil surveys. Paper presented at the Proceedings of a workshop of the ISSS and the SSSA, Las Vegas, USA. Wu, L., Peng, Y., Fan, J., & Wang, Y. (2019). Machine learning models for the estimation of monthly mean daily reference evapotranspiration based on cross-station and synthetic data. Hydrology Research, 50(6), 1730–1750. https:// doi.org/ 10. 2166/nh. 2019. 060. Wu, M., Feng, Q., Wen, X., Deo, R., Yin, Z., Yang, L., & Sheng, D. (2020). Random forest predictive model development with uncertainty analysis capability for the estimation of evapotranspiration in an arid oasis region. Hydrology Research, 51(4), 648–665. https://doi.org/10.2166/nh.2020.012. Zandler, H., Haag, I., & Samimi, C. (2019). Evaluation needs and temporal performance differences of gridded precipitation products in peripheral mountain regions. Scientific Reports, 9(1), 1-15. https://doi.org/10.1038/s41598-019-51666-z. | ||
آمار تعداد مشاهده مقاله: 149 تعداد دریافت فایل اصل مقاله: 94 |