تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,036 |
تعداد مشاهده مقاله | 125,504,383 |
تعداد دریافت فایل اصل مقاله | 98,768,488 |
ارزیابی شاخصهای هوموسی شدن و جوانهزنی بذر و غلظت برخی عناصر در کمپوست مشترک کود دامی و مواد آلی جنگلی تحت تأثیر مصرف بیوچار چوبی، لئوناردیت و زغالسنگ | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 5، مرداد 1403، صفحه 697-713 اصل مقاله (1.6 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.373171.669672 | ||
نویسندگان | ||
عادل ریحانی تبار* 1؛ مریم راجی2؛ کمال خلخال3؛ آرش همتی4؛ محمدرضا ساریخانی*5 | ||
1گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران | ||
2گروه علوم و مهندسی خاک، دانشکده کشاورزی دانشگاه تبریز، تبریز، ایران | ||
3بخش تحقیقات آب و خاک ، مرکز تحقیقات و آموزش کشاورزی و منابع طبیعی استان کرمانشاه، مرکز تحقیقات، آموزش و توسع کشاورزی، کرمانشاه، ایران | ||
4گروه علوم و مهندسی خاک- دانشکده کشاورزی- دانشگاه تبریز، تبریز، ایران | ||
5گروه علوم و مهندسی خاک، دانشکده کشاورزی دانشگاه تبریز | ||
چکیده | ||
در این پژوهش اثر مصرف بیوچار، لئوناردیت و زغالسنگ بر شاخصهای هوموسیشدن و جوانهزنی و غلظت برخی عناصر در کمپوست مشترک کود دامی و مواد آلی جنگلی مطالعه شد. آزمایش بهصورت فاکتوریل و در قالب طرح کاملاً تصادفی با سه تکرار اجرا گردید. فاکتور اول تیمار (مواد افزودنی) در دو سطح (2 و 4 درصد وزنی) با مواد اولیه مخلوط شدند و فاکتور دوم زمان بود. در طول فرایند کمپوستشدن و در هفتههای اول تا 12 نمونهبرداری انجام و دما، EC، نسبت C/N، غلظت نیترات و غلظت کل عناصر P، K، Ca، Mg، Na، Fe، Zn، Cu و Mn، شاخصهای هوموسیشدن و جوانهزنی در کمپوست اندازهگیری شدند. بر طبق نتایج، تیمار زغالسنگ در سطح 2 درصد بالاترین دما و تیمار لئوناردیت 2 درصد بیشترین طول مدتزمان فاز ترموفیلی را داشتند. تیمار زغالسنگ در سطح 4 درصد باعث افزایش معنیدار EC و بیوچار باعث افزایش غلظت نیترات و نسبت C/N شد. افزودن لئوناردیت باعث افزایش معنیدار درصد اسید هیومیک و فولویک شد و بالاترین مقادیر شاخص هوموسیشدن و درجه پلیمریزاسیون را ایجاد کرد. برخلاف انتظار مواد افزودنی بر شاخص جوانهزنی و نسبتهای E3/E5 و E4/E6 اثر معنیداری نداشتند. در مورد غلظت کل عناصر، تیمار شاهد دارای غلظت عناصر بالاتری در مقایسه با سایر تیمارها بود. نتایج این تحقیق نشان داد با توجه به هزینههای مواد اولیه، زغالسنگ تیمار مناسبی برای تسریع تولید و بهبود کیفیت کمپوست میباشد و از لئوناردیت به دلیل درصد بالای مواد هیومیک میتوان در انتهای کمپوستشدن بهمنظور غنیسازی و بهبود کیفیت کمپوست تولید شده استفاده نمود. | ||
کلیدواژهها | ||
بیوچار؛ زغالسنگ؛ کمپوستشدن مشترک؛ کود دامی؛ لئوناردیت | ||
مراجع | ||
Abbt-Braun, G., & Frimmel, F. H. (1999). Basic characterization of Norwegian NOM samples - Similarities and differences. Environment International, 25(2–3), 161–180. https://doi.org/10.1016/S0160-4120(98)00118-4 Adani, F., Genevini, PL., Gasperi, F., & Tambone, F. (1999). Composting and humification. Compost Science & Utilization 7(7):24–33. https://doi.org/10.1080/1065657X.1999.10701949 Agegnehu, G., Srivastava, A. K., & Bird, M. I. (2017). The role of biochar and biochar-compost in improving soil quality and crop performance: A review. Applied Soil Ecology, 119, 156-170. https://doi. org/10.1016/j.apsoil.2017.06.008 Amir, S., Benlboukht, F., Cancian, N., Winterton, P., & Hafidi, M. (2008). Physico-chemical analysis of tannery solid waste and structural characterization of its isolated humic acids after composting. Journal of Hazardous Materials, 160(2-3), 448-455. https://doi.org/10.1016/j.jhazmat.2008.03.017 Awasthi, M. K., Duan, Y., Liu, T., Awasthi, S. K., & Zhang, Z. (2020). Relevance of biochar to influence the bacterial succession during pig manure composting. Bioresource Technology, 304, 122962. https://doi.org/10.1016/j.biortech.2020.122962 Awasthi, M. K., Wang, M., Chen, H., Wang, Q., Zhao, J., Ren, X., & Zhang, Z. (2017a). Heterogeneity of biochar amendment to improve the carbon and nitrogen sequestration through reduce the greenhouse gases emissions during sewage sludge composting. Bioresource Technology, 224, 428-438. https://doi.org/10.1016/j.biortech.2016.11.014 Awasthi, M. K., Wang, Q., Chen, H., Awasthi, S. K., Wang, M., Ren, X., & Zhang, Z. (2018). Beneficial effect of mixture of additives amendment on enzymatic activities, organic matter degradation and humification during biosolids co-composting. Bioresource Technology, 247, 138-146. https://doi.org/10.1016/j.biortech.2017.09.061 Awasthi, M. K., Wang, Q., Chen, H., Wang, M., Ren, X., Zhao, J., & Zhang, Z. (2017b). Evaluation of biochar amended biosolids co-composting to improve the nutrient transformation and its correlation as a function for the production of nutrient-rich compost. Bioresource Technology, 237, 156-166. https://doi.org/10.1016/j.biortech.2017.01.044 Barthod, J., Rumpel, C., & Dignac, M. F. (2018). Composting with additives to improve organic amendments. A review. Agronomy for Sustainable Development, 38(2), 17. https://doi.org/10.1007/s13593-018-0491-9 Behera, S., & Samal, K. (2022). Sustainable approach to manage solid waste through biochar assisted composting. Energy Nexus, 100121. https://doi.org/10.1016/j.nexus.2022.100121 Bernal, M. P., Alburquerque, J. A., & Moral, R. (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology, 100(22), 5444-5453. https://doi.org/10.1016/j.biortech.2008.11.027 Campbell Jr, A. G., Folk, R. L., & Tripepi, R. R. (1997). Wood ash as an amendment in municipal sludge and yard waste composting processes. Compost Science & Utilization, 5(1), 62-73. https://doi.org/10.1080/1065657X.1997.10701864 Carter, M. R., & Gregorich, E. G. (Eds.). (2007). Soil sampling and methods of analysis. CRC press. Cataldo, D. A., Maroon, M., Schrader, L. E., & Youngs, V. L. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6(1), 71-80. https://doi.org/10.1080/00103627509366547 Chen, X., Du, Z., Liu, D., Wang, L., Pan, C., Wei, Z., & Zhao, R. (2022). Biochar mitigates the biotoxicity of heavy metals in livestock manure during composting. Biochar, 4(1), 48. https://doi.org/10.1007/s42773-022-00174-x Chen, Y. X., Huang, X. D., Han, Z. Y., Huang, X., Hu, B., Shi, D. Z., & Wu, W. X. (2010). Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting. Chemosphere, 78(9), 1177-1181. https://doi.org/10.1016/ j.chemosphere.2009.12.029 Chen, Y., Senesi, N., & Schnitzer, M. (1977). Information provided on humic substances by E4/E6 ratios. Soil Science Society of America Journal, 41(2), 352-358. https://doi.org/10.2136/sssaj1977.03615995004100020037x Chowdhury, M. A., de Neergaard, A., & Jensen, L. S. (2014). Potential of aeration flow rate and bio-char addition to reduce greenhouse gas and ammonia emissions during manure composting. Chemosphere, 97, 16-25. https://doi.org/10.1016/j. chemosphere.2013.10.030. Chung, W. J., Chang, S. W., Chaudhary, D. K., Shin, J., Kim, H., Karmegam, N., ... & Ravindran, B. (2021). Effect of biochar amendment on compost quality, gaseous emissions and pathogen reduction during in-vessel composting of chicken manure. Chemosphere, 283, 131129. https://doi.org/10.1016/j.chemosphere.2021.131129 Cui, H., Ou, Y., Wang, L., Yan, B., Li, Y., & Ding, D. (2020). The passivation effect of heavy metals during biochar-amended composting: emphasize on bacterial communities. Waste Management, 118, 360-368. https://doi.org/10.1016/j.wasman.2020.08.043 Dias, B. O., Silva, C. A., Higashikawa, F. S., Roig, A., & Sánchez-Monedero, M. A. (2010). Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification. Bioresource Technology, 101(4), 1239-1246. https://doi.org/10.1016/j.biortech.2009.09.024 Doublet, J., Francou, C., Poitrenaud, M., & Houot, S. (2011). Influence of bulking agents on organic matter evolution during sewage sludge composting; consequences on compost organic matter stability and N availability. Bioresource Technology, 102(2), 1298-1307. https://doi.org/10.1016/j.biortech.2010.08.065 Font-Palma, C. (2019). Methods for the treatment of cattle manure—a review. C — Journal of Carbon Research, 5(2), 27. https://doi.org/10.3390/c5020027 Gabhane, J., William, S. P., Bidyadhar, R., Bhilawe, P., Anand, D., Vaidya, A. N., & Wate, S. R. (2012). Additives aided composting of green waste: Effects on organic matter degradation, compost maturity, and quality of the finished compost. Bioresource Technology, 114, 382-388. https://doi.org/10.1016/j.biortech.2012.02.040 Girotto, F., & Cossu, R. (2017). Animal waste: Opportunities and challenges. Sustainable Agriculture Reviews, 1-13. https://doi.org/10.1007/978-3-319-48006-0_1 Gou, M., Hu, H. W., Zhang, Y. J., Wang, J. T., Hayden, H., Tang, Y. Q., & He, J. Z. (2018). Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils. Science of the Total Environment, 612, 1300-1310. https://doi.org/10.1016/j.scitotenv.2017.09.028 Hagemann, N., Subdiaga, E., Orsetti, S., de la Rosa, J. M., Knicker, H., Schmidt, H. P., ... & Behrens, S. (2018). Effect of biochar amendment on compost organic matter composition following aerobic composting of manure. Science of The Total Environment, 613, 20-29. https://doi.org/10.1016/j.scitotenv.2017.08.161. He, X., Chen, L., Han, L., Liu, N., Cui, R., Yin, H., & Huang, G. (2017). Evaluation of biochar powder on oxygen supply efficiency and global warming potential during mainstream large-scale aerobic composting. Bioresource Technology, 245, 309-317. https://doi.org/10.1016/j.biortech.2017.08.076. Helal, A. A., Murad, G. A., & Helal, A. A. (2011). Characterization of different humic materials by various analytical techniques. Arabian Journal of Chemistry, 4(1), 51-54. https://doi.org/10.1016/j.arabjc.2010.06.018 Hemati A, 2017. Isolation of thermophile ligninolytic microorganisms for acceleration of compost production and its quality improvement. PH.D Thesis. Faculty of Agriculture, University of Tabriz. (in Persian) Jiang, J., Kang, K., Wang, C., Sun, X., Dang, S., Wang, N., & Li, Y. (2018). Evaluation of total greenhouse gas emissions during sewage sludge composting by the different dicyandiamide added forms: Mixing, surface broadcasting, and their combination. Waste Management, 81, 94-103. https://doi.org/10.1016/j.wasman.2018.10.003 Jurado, M. M., Suárez-Estrella, F., Vargas-García, M. C., López, M. J., López-González, J. A., & Moreno, J. (2014). Evolution of enzymatic activities and carbon fractions throughout composting of plant waste. Journal of Environmental Management, 133, 355-364. https://doi.org/10.1016/j.jenvman.2013.12.020 Li, H., Zhang, T., Tsang, D. C., & Li, G. (2020). Effects of external additives: Biochar, bentonite, phosphate, on co-composting for swine manure and corn straw. Chemosphere, 248, 125927. https://doi.org/10.1016/j.chemosphere.2020.125927 Li, R., Wang, J. J., Zhang, Z., Shen, F., Zhang, G., Qin, R., & Xiao, R. (2012). Nutrient transformations during composting of pig manure with bentonite. Bioresource Technology, 121, 362-368. https://doi.org/10.1016/j.biortech.2012.06.065 Malinowski, M., Wolny-Koładka, K., & Vaverková, M. D. (2019). Effect of biochar addition on the OFMSW composting process under real conditions. Waste Management, 84, 364-372. https://doi.org/10.1016/j.wasman.2018.12.011 Manu, M. K., Wang, C., Li, D., Varjani, S., Xu, Y., Ladumor, N., & Wong, J. W. (2021). Biodegradation kinetics of ammonium enriched food waste digestate compost with biochar amendment. Bioresource Technology, 341, 125871. https://doi.org/10.1016/j.biortech.2021.125871 Mao, H., Lv, Z., Sun, H., Li, R., Zhai, B., Wang, Z., ... & Zhou, L. (2018). Improvement of biochar and bacterial powder addition on gaseous emission and bacterial community in pig manure compost. Bioresource Technology, 258, 195-202. https://doi.org/10.1016/j.biortech.2018.02.082. Martin, J. M., Dai, M. H., & Cauwet, G. (1995). Significance of colloids in the biogeochemical cycling of organic carbon and trace metals in the Venice Lagoon (Italy). Limnology and Oceanography, 40(1), 119-131. https://doi.org/10.4319/lo.1995.40.1.0119 Morales, A. B., Bustamante, M. A., Marhuenda-Egea, F. C., Moral, R., Ros, M., & Pascual, J. A. (2016). Agri-food sludge management using different co-composting strategies: study of the added value of the composts obtained. Journal of Cleaner Production, 121, 186-197. https://doi.org/10.1016/j.jclepro.2016.02.012 Mukherjee, A., & Lal, R. (2014). The biochar dilemma. Soil Research, 52(3), 217-230. https://doi.org/10.1071/SR13359 Olivella, M. A., Sole, M., Gorchs, R., Lao, C., & De Las Heras, F. X. C. (2011). Geochemical characterization of a Spanish leonardite coal. Archives of Mining Sciences, 56(4), 789-804. Peters, J., Combs, S., Hoskins, B., Jarman, J., Kovar, J., Watson, M., & Wolf, N. (2003). Recommended methods of manure analysis. University of Wisconsin Cooperative Extension Publishing: Madison, WI. Qi, B. C., Aldrich, C., & Lorenzen, L. (2004). Effect of ultrasonication on the humic acids extracted from lignocellulose substrate decomposed by anaerobic digestion. Chemical Engineering Journal, 98(1-2), 153-163. https://doi.org/10.1016/j.cej.2003.07.002 Rasapoor, M., Nasrabadi, T., Kamali, M., & Hoveidi, H. (2009). The effects of aeration rate on generated compost quality, using aerated static pile method. Waste Management, 29(2), 570-573. https://doi.org/10.1016/j.wasman.2008.04.012 Ren, X., Wang, Q., Awasthi, M. K., Zhao, J., Wang, J., Liu, T., & Zhang, Z. (2019). Improvement of cleaner composting production by adding Diatomite: From the nitrogen conservation and greenhouse gas emission. Bioresource Technology, 286, 121377.https://doi.org/10.1016/j.biortech. 2019.121377 Sánchez-García, M., Alburquerque, J. A., Sánchez-Monedero, M. A., Roig, A., & Cayuela, M. L. (2015). Biochar accelerates organic matter degradation and enhances N mineralisation during composting of poultry manure without a relevant impact on gas emissions. Bioresource Technology, 192, 272-279. https://doi.org/10.1016/j.biortech.2015.05.003 Sánchez–Monedero, M. A., Roig, A., Cegarra, J., & Bernal, M. P. (1999). Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting. Bioresource Technology, 70(2), 193-201. https://doi.org/10.1016/S0960-8524(99)00018-8 Tasho, R. P., & Cho, J. Y. (2016). Veterinary antibiotics in animal waste, its distribution in soil and uptake by plants: A review. Science of The Total Environment, 563, 366-376. https://doi.org/10.1016/j.scitotenv.2016.04.140 Veeken, A., Nierop, K., de Wilde, V., & Hamelers, B. (2000). Characterisation of NaOH-extracted humic acids during composting of a biowaste. Bioresource Technology, 72(1), 33-41. https://doi.org/10.1016/S0960-8524(99)90096-2 Wang, C., Tu, Q., Dong, D., Strong, P. J., Wang, H., Sun, B., & Wu, W. (2014). Spectroscopic evidence for biochar amendment promoting humic acid synthesis and intensifying humification during composting. Journal of Hazardous Materials, 280, 409-416. https://doi.org/10.1016/j.jhazmat.2014.08.030 Wang, Z., Xu, Y., Yang, T., Liu, Y., Zheng, T., & Zheng, C. (2023). Effects of biochar carried microbial agent on compost quality, greenhouse gas emission and bacterial community during sheep manure composting. Biochar, 5(1), 3.https://doi.org/10.1007/s42773-022-00202-w Westerman RL (1990) Soil Testing and Plant Analysis. 3. In: The Soil Science Society of America Book Series. Third Edition, Soil Science Society of American, Inc., Madison, Wisconsin, USA, pp 389-427. Zalewska, M., Błażejewska, A., Szadziul, M., Ciuchciński, K., & Popowska, M. (2024). Effect of composting and storage on the microbiome and resistome of cattle manure from a commercial dairy farm in Poland. Environmental Science and Pollution Research, 1-17. https://doi.org/10.1007/s11356-024-33276-z Zhang, J., Lü, F., Shao, L., & He, P. (2014). The use of biochar-amended composting to improve the humification and degradation of sewage sludge. Bioresource Technology, 168, 252-258. https://doi.org/10.1016/j.biortech.2014.02.080 Zucconi, F., Pera, A., Forte, M., & De Bertoldi, M. (1981). Evaluating toxicity of immature compost. Biocycle, 22: 54–57. | ||
آمار تعداد مشاهده مقاله: 215 تعداد دریافت فایل اصل مقاله: 161 |