تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,114,387 |
تعداد دریافت فایل اصل مقاله | 97,218,136 |
ارزیابی مدلهای AquaCrop و SWAP در شبیهسازی رشد و زیستتوده ارقام مختلف ذرت تحت شرایط استفاده از آب شور با سیستم آبیاری قطرهای | ||
تحقیقات آب و خاک ایران | ||
دوره 55، شماره 4، تیر 1403، صفحه 615-636 اصل مقاله (1.94 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2024.372500.669664 | ||
نویسندگان | ||
حسین گلشنی؛ مرتضی خوش سیمای چنار* | ||
گروه مهندسی آبیاری و آبادانی، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
استفاده از مدلهای شبیهسازی یک استراتژی در مدیریت مصرف آب کشاورزی و روشی مؤثر در پیشبینی تأثیر مدیریت آبیاری و کیفیت آب بر عملکرد محصول است. این مطالعه با هدف ارزیابی دو مدل SWAP و AquaCrop در شبیهسازی رشد و زیستتوده سه رقم ذرت علوفهای در شرایط استفاده از آب شور با سیستم آبیاری قطرهای در مزرعه پژوهشی پردیس کشاورزی و منابع طبیعی دانشگاه تهران انجام شد. بهمنظور واسنجی و صحتسنجی مدلها از دادههای مزرعهای حاصل از یک آزمایش فاکتوریل با دو عامل رقم ذرت (سه رقم ذرت علوفهای سینگلکراس 704، 400 و 260) و شوری آب آبیاری (سه سطح شوری آب آبیاری 7/0، 3 و 5 دسیزیمنس بر متر) استفاده شد. در مرحله صحتسنجی برای مدل AquaCrop، آمارههای R2، RMSE و NRMSE در مقایسه دادههای اندازهگیری و شبیهسازی شده درصد پوشش سبز (CC) بهترتیب برابر 953/0، 69/5 و 8 درصد و برای مدل SWAP آمارههای مذکور برای شاخص سطح برگ (LAI) بهترتیب 477/0، 610/1 و 2/54 درصد محاسبه شد. برخلاف نتایج ضعیف مدل SWAP در برآورد LAI، هر دو مدل SWAP و AquaCrop زیستتوده ارقام ذرت در تیمارهای مختلف را بهخوبی شبیهسازی کردند. در مرحله واسنجی و صحتسنجی RMSE و NRMSE هر دو مدل بهترتیب کمتر از 5/0 تن در هکتار، 3 درصد (واسنجی) و یک تن بر هکتار و 7 درصد (صحتسنجی) بهدست آمد. بهطور کلی میتوان از هر دو مدل در مطالعات مختلف برای ارقام متفاوت ذرت علوفهای تحت شرایط شوری آب آبیاری و خاک استفاده کرد. | ||
کلیدواژهها | ||
تنش شوری؛ شاخص سطح برگ؛ کنوپی کاور؛ مدلسازی گیاهی؛ واسنجی و صحتسنجی | ||
مراجع | ||
Abdalhi, M. A., Jia, Z., Luo, W., Tang, S., Ali, O. O., & Cheng, J. (2019). FAO AquaCrop model performance: in green canopy cover, soil moisture and production of maize at middle and lower reaches plain of Yangtze River of China. Russian Agricultural Sciences, 45, 186-193. Abdelkhalik, A., Pascual-Seva, N., Nájera, I., Giner, A., Baixauli, C., & Pascual, B. (2019). Yield response of seedless watermelon to different drip irrigation strategies under Mediterranean conditions. Agricultural Water Management, 212, 99-110. Abedzadeh, S., Roozbahani, A., & Heidari, A. (2020). Risk Assessment of Water Resources Development Plans Using the Fault Tree Analysis Method (Case Study: District 4 of Mokran and Bandar Abbas). Iranian journal of Ecohydrology, 7(1), 29-45. doi: 10.22059/ije.2020.288016.1201 (In Persian) Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao, Rome, 300(9), D05109. Álvarez-Méndez, S. J., Padrón-Armas, I., & Mahouachi, J. (2021). Irrigation management strategies through the combination of fresh water and desalinated sea water for banana crops in El Hierro, Canary Islands. Water Reuse, 11(3), 464-474. Amiri, E., & Shirshahi, F. (2018). Evaluation of Maize Response to Less Irrigation Management Using Swap Model. Crop Ecophysiology (Agriculture Science), 4 (44), 759-774. (In Persian) Ayers, R. S., & Westcot, D. W. (1985). Water quality for agriculture (Vol. 29, p. 174). Rome: Food and agriculture organization of the United Nations. Boogaard, H. L., Van Diepen, C. A., Rotter, R. P., Cabrera, J. M. C. A., & Van Laar, H. H. (1998). WOFOST 7.1; user's guide for the WOFOST 7.1 crop growth simulation model and WOFOST Control Center 1.5 (No. 52). SC-DLO. Burn, S., Hoang, M., Zarzo, D., Olewniak, F., Campos, E., Bolto, B., & Barron, O. (2015). Desalination techniques—A review of the opportunities for desalination in agriculture. Desalination, 364, 2-16. Colombani, N., Mastrocicco, M., & Giambastiani, B. M. S. (2015). Predicting salinization trends in a lowland coastal aquifer: Comacchio (Italy). Water Resources Management, 29, 603-618. Daghari, I., Bani, A., Bousnina, H., & Chaabane, A. (2020). On‐farm water and salt management under a strawberry–pepper combination in the Korba area. Irrigation and Drainage, 69(3), 441-447. Ebrahimipak, N. A., Egdarnejad, A., & Khodadadi Dehkordi, D. (2018). Evaluation of AquaCrop Model to Simulate Corn Yield under Water deficit and Superabsorbent application. Irrigation and Water Engineering, 8(3), 166-184. (In Persian) Ebrahimipak, N., Egdernezhad, A., Tafteh, A., & Ahmadee, M. (2019). Evaluation of AquaCrop, WOFOST, and CropSyst to Simulate Rapeseed Yield. Iranian Journal of Irrigation & Drainage, 13(3), 715-726. (In Persian) Feng, D., Li, G., Wang, D., Wulazibieke, M., Cai, M., Kang, J., ... & Xu, H. (2022). Evaluation of AquaCrop model performance under mulched drip irrigation for maize in Northeast China. Agricultural Water Management, 261, 107372. Garcia-Caparros, P., Contreras, J. I., Baeza, R., Segura, M. L., & Lao, M. T. (2017). Integral management of irrigation water in intensive horticultural systems of Almería. Sustainability, 9(12), 2271. Hammami, Z., Qureshi, A. S., Sahli, A., Gauffreteau, A., Chamekh, Z., Ben Azaiez, F. E., ... & Trifa, Y. (2020). Modeling the effects of irrigation water salinity on growth, yield and water productivity of barley in three contrasted environments. Agronomy, 10(10), 1459. Hassanli, M., Ebrahimian, H., Mohammadi, E., Rahimi, A., & Shokouhi, A. (2016). Simulating maize yields when irrigating with saline water, using the AquaCrop, SALTMED, and SWAP models. Agricultural water management, 176, 91-99. He, Q., Li, S., Hu, D., Wang, Y., & Cong, X. (2021). Performance assessment of the AquaCrop model for film-mulched maize with full drip irrigation in Northwest China. Irrigation Science, 39, 277-292. Huang, M., Wang, C., Qi, W., Zhang, Z., & Xu, H. (2022). Modelling the integrated strategies of deficit irrigation, nitrogen fertilization, and biochar addition for winter wheat by AquaCrop based on a two-year field study. Field Crops Research, 282, 108510. Huang, X., Lin, D., Mao, X., & Zhao, Y. (2023). Multi-source data fusion for estimating maize leaf area index over the whole growing season under different mulching and irrigation conditions. Field Crops Research, 303, 109111. Jiang, J., Feng, S., Ma, J., Huo, Z., & Zhang, C. (2016). Irrigation management for spring maize grown on saline soil based on SWAP model. Field Crops Research, 196, 85-97. Kamyab-Talesh, F., Mostafazadeh-Fard, B., Vazifedoust, M., Shayannejad, M., & Navabian, M. (2017). Salt Tolerance Analysis of Crops Using the SWAP Model. Biosciences Biotechnology Research Asia, 14(2), 643-649. Kamyab-Talesh, F., Mostafazadeh-Fard, B., Vazifedoust, M., Shayannejad, M., & Navabian, M. (2017). Salt Tolerance Analysis of Crops Using the SWAP Model. Biosciences Biotechnology Research Asia, 14(2), 643-649. Kaner, A., Tripler, E., Hadas, E., & Ben-Gal, A. (2017). Feasibility of desalination as an alternative to irrigation with water high in salts. Desalination, 416, 122-128. Karimi, S., Egdernezhad, A., & Nakhjavanimoghaddam, M. M. (2021). Evaluation of SWAP Model for Simulation of Early and Mid-Corn in Different Plant Densities under Sprinkler Irrigation. Iranian Journal of Irrigation & Drainage, 14(6), 1893-1907. (In Persian) Khafajeh, H., Banakar, A., Minaei, S., & Delavar, M. (2020). Evaluation of AquaCrop model of cucumber under greenhouse cultivation. The Journal of Agricultural Science, 158(10), 845-854. Khoshsimaie chenar, M., & Noory, H. (2019). Effect of Irrigation Water Salinity on Yield and Agronomic Characteristics of Three Corn (Zea mays L.) Hybrids Using Drip-Tape Irrigation. Iranian Journal of Soil and Water Research, 50(8), 2037-2049. doi: 10.22059/ijswr.2019.271808.668073 (In Persian) Khoshsimaie chenar, M., & Noory, H. (2020). Effect of Irrigation Water Salinity on Soil Salinity and Yield of Three Maize Hybrids in Drip Irrigation System. The first national conference on irrigation deficiency and the use of unconventional water in agriculture in dry areas،Mashhad،https://civilica.com/doc/1193778 (In Persian) Khoshsimaie chenar, M., Noory, H., & Mahmoudi molamahmoud, Z. (2021). Evaluation of SWAP model in estimating soil water content, salinity and yield of three forage maize cultivars under saline water use conditions. Water and Irrigation Management, 11(3), 495-512. doi: 10.22059/jwim.2021.325835.893 (In Persian) Kroes, J. G., Van Dam, J. C., Bartholomeus, R. P., Groenendijk, P., Heinen, M., Hendriks, R. F. A., ... & Van Walsum, P. E. V. (2017). SWAP version 4: theory description and user manual. Alterra-rapport-Wageningen University and Research Centre, (2780). Kumar, P., Sarangi, A., Singh, D. K., Parihar, S. S., & Sahoo, R. N. (2015). Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model. Agricultural Water Management, 148, 72-83. Kumar, P., Sarangi, A., Singh, D. K., Parihar, S. S., & Sahoo, R. N. (2015). Simulation of salt dynamics in the root zone and yield of wheat crop under irrigated saline regimes using SWAP model. Agricultural Water Management, 148, 72-83. Li, J., Chen, J., Qu, Z., Wang, S., He, P., & Zhang, N. (2019). Effects of alternating irrigation with fresh and saline water on the soil salt, soil nutrients, and yield of tomatoes. Water, 11(8), 1693. Liang, H., Hu, K., Qin, W., Zuo, Q., & Zhang, Y. (2017). Modelling the effect of mulching on soil heat transfer, water movement and crop growth for ground cover rice production system. Field Crops Research, 201, 97-107. Liu, B., Wang, S., Kong, X., Liu, X., & Sun, H. (2019). Modeling and assessing feasibility of long-term brackish water irrigation in vertically homogeneous and heterogeneous cultivated lowland in the North China Plain. Agricultural Water Management, 211, 98-110. Mehrazar, A., Soltani, J., & Rahmati, O. (2016). Evaluation of the AquaCrop Model to Simulate Maize Yield Response under Salinity Stress. Water and Soil, 30(5), 1426-1439 (In Persian) Mekonnen, M. M., & Hoekstra, A. Y. (2016). Four billion people facing severe water scarcity. Science advances, 2(2), e1500323. Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900. Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water resources research, 12(3), 513-522. Neysi, K., Egdernezhad, A., & Abbasi, F. (2023). Evaluation of SWAP Model for Simulating Corn Yield and Water Productivity under Different Conditions of Irrigation Water and Nitrogen Fertilizer Management. Iranian Journal of Irrigation & Drainage, 17(3), 573-584. (In Persian) Nouri, M., Homaee, M., Pereira, L. S., & Bybordi, M. (2023). Water management dilemma in the agricultural sector of Iran: A review focusing on water governance. Agricultural Water Management, 288, 108480. Raes, D., & Munoz, G. (2009). The ETo Calculator. Reference Manual Version, 3, 480. Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). AquaCrop—the FAO crop model to simulate yield response to water: II. Main algorithms and software description. Agronomy Journal, 101(3), 438-447. Ran, H., Kang, S., Li, F., Du, T., Tong, L., Li, S., ... & Zhang, X. (2018). Parameterization of the AquaCrop model for full and deficit irrigated maize for seed production in arid Northwest China. Agricultural Water Management, 203, 438-450. Ranjbar, A., Rahimikhoob, A., Ebrahimian, H., & Varavipour, M. (2019). Assessment of the AquaCrop model for simulating maize response to different nitrogen stresses under semi-arid climate. Communications in Soil Science and Plant Analysis, 50(22), 2899-2912. Rasouli, F., Kiani Pouya, A., & Šimůnek, J. (2013). Modeling the effects of saline water use in wheat-cultivated lands using the UNSATCHEM model. Irrigation Science, 31, 1009-1024. Reca, J., Trillo, C., Sánchez, J. A., Martínez, J., & Valera, D. (2018). Optimization model for on-farm irrigation management of Mediterranean greenhouse crops using desalinated and saline water from different sources. Agricultural Systems, 166, 173-183. Rhoades, J. D., Kandiah, A., & Mashali, A. M. (1992). The use of saline waters for crop production-FAO irrigation and drainage paper 48. FAO, Rome, 133. Sandhu, R., & Irmak, S. (2019a). Assessment of AquaCrop model in simulating maize canopy cover, soil-water, evapotranspiration, yield, and water productivity for different planting dates and densities under irrigated and rainfed conditions. Agricultural Water Management, 224, 105753. Sandhu, R., & Irmak, S. (2019b). Performance of AquaCrop model in simulating maize growth, yield, and evapotranspiration under rainfed, limited and full irrigation. Agricultural Water Management, 223, 105687. Sarkohaki A, Egdernezhad A, & Minaei S. (2021b). Determining the Accuracy and Efficiency of Water-driven and Carbon-driven Crop Models to Simulate the Yield, Biomass and Water Use Efficiency of Corn. Journal of Water and Soil Science, 25(1), 141-156. (In Persian) Sarkohaki, A., Egdernezhad, A., & Minaei, S. (2021a). Evaluation of AquaCrop for Yield and Water Use Efficiency Simulation of Corn with Different Irrigation Management under Salinity Stress. Iranian Water Researches Journal, 15(1), 133-147. (In Persian) Scheierling, S. M., & Tréguer, D. O. (2018). Beyond crop per drop. Washington, DC: World Bank. Soomro, K. B., Alaghmand, S., Shahid, M. R., Andriyas, S., & Talei, A. (2020). Evaluation of AquaCrop model in simulating bitter gourd water productivity under saline irrigation. Irrigation and Drainage, 69(1), 63-73. Soothar, R. K., Wang, C., Li, L., Cui, N., Zhang, W., & Wang, Y. (2021). Soil salt accumulation, physiological responses, and yield simulation of winter wheat to alternate saline and fresh water irrigation in the North China Plain. Journal of Soil Science and Plant Nutrition, 21(3), 2072-2082. Torrez, V., Jørgensen, P. M., & Zanne, A. E. (2013). Specific leaf area: a predictive model using dried samples. Australian Journal of botany, 61(5), 350-357. UNESCO, U. W. (2020). United Nations World Water Development Report 2020: Water and Climate Change, Paris, UNESCO. Van Diepen, C. V., Wolf, J., Van Keulen, H., & Rappoldt, C. (1989). WOFOST: a simulation model of crop production. Soil use and management, 5(1), 16-24. Van Genuchten, M. T. (1980). A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils. Soil science society of America journal, 44(5), 892-898. Van Genuchten, M. V., Leij, F. J., & Yates, S. R. (1991). The RETC code for quantifying the hydraulic functions of unsaturated soils. Wang, B., van Dam, J., Yang, X., Ritsema, C., Du, T. and Kang, S., (2023). Reducing water productivity gap by optimizing irrigation regime for winter wheat-summer maize system in the North China Plain. Agricultural Water Management, 280, p.108229. Wang, Q., Huo, Z., Zhang, L., Wang, J., & Zhao, Y. (2016). Impact of saline water irrigation on water use efficiency and soil salt accumulation for spring maize in arid regions of China. Agricultural Water Management, 163, 125-138. yazdekhasti M., Shayannejad M., Eshghizadeh H., & Feizi M. (2018). The Effect of Different Saline Irrigation Regimes on the Yield of Grain Sorghum and Yield Simulation using SWAP Model. Water and Soil Science - Journal of Science and Technology of Agriculture and Natural Resources, 22(3), 95-106. (In Persian) Zabihi, A., Darzi-Nafchali, A., & Khoshravesh, M. (2017). Analysing drought stress effects on yield and water use efficiency of rice and the root zone salinity. Environmental Stresses in Crop Sciences, 9(4), 375-385. doi: 10.22077/escs.2017.465 (In Persian) Zhao, Y., Li, F., Wang, Y. and Jiang, R., (2020b). Evaluating the effect of groundwater table on summer maize growth using the AquaCrop model. Environmental Modeling & Assessment, 25, pp.343-353. Zhao, Y., Mao, X., & Shukla, M. K., (2020a). A modified SWAP model for soil water and heat dynamics and seed–maize growth under film mulching. Agricultural and Forest Meteorology, 292, 108127. | ||
آمار تعداد مشاهده مقاله: 131 تعداد دریافت فایل اصل مقاله: 92 |