
تعداد نشریات | 162 |
تعداد شمارهها | 6,694 |
تعداد مقالات | 72,245 |
تعداد مشاهده مقاله | 129,260,892 |
تعداد دریافت فایل اصل مقاله | 102,101,921 |
اثر تغذیه مکمل چربی پرک یا گرانول حاوی لسیتین یا پودر صفرا بر عملکرد تولیدی و منشأ اسیدهای چرب شیر در گاوهای شیرده هلشتاین | ||
علوم دامی ایران | ||
دوره 56، شماره 1، فروردین 1404، صفحه 155-174 اصل مقاله (2 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijas.2024.372940.654002 | ||
نویسندگان | ||
حمیدرضا تقیان1؛ کامران رضایزدی* 1؛ مهدی دهقان بنادکی1؛ حامد خلیلوندی بهروزیار2 | ||
1گروه علومدامی، دانشکدگان کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
2گروه علومدامی، دانشکده کشاورزی، دانشگاه ارومیه، ارومیه، ایران | ||
چکیده | ||
هدف این پژوهش بررسی اثر تغذیه مکمل چربی حاوی افزودنی (لسیتین یا پودر صفرا) با شکل فیزیکی پرک یا گرانول بر عملکرد تولیدی و منشأ اسیدهای چرب در گاوهای شیرده هلشتاین است. 48 رأس گاو شیرده طی دو دوره آزمایشی در قالب طرح چند عاملی 2×3×2 کاملاً تصادفی استفاده شد که بهطور تصادفی در 6 تیمار آزمایشی گروهبندی شدند: 1. جیره حاوی 5/2 درصد مکمل چربی گرانول، 2. جیره حاوی 5/2 درصد مکمل چربی گرانول حاوی 5 درصد لسیتین، 3. جیره حاوی 5/2 درصد مکمل چربی گرانول حاوی 5 درصد پودر صفرا، 4. جیره حاوی 5/2 درصد مکمل چربی پرک، 5. جیره حاوی 5/2 درصد مکمل چربی پرک حاوی 5 درصد لسیتین و 6. جیره حاوی 5/2 درصد مکمل چربی پرک حاوی 5 درصد پودر صفرا. تمام جیرههای آزمایشی طبق توصیههای انجمن ملی تحقیقات متعادل شدند. تمامی دادههای آزمایش با استفاده از نرمافزار آماری واکاوی شدند. افزودنیهای لسیتین یا پودر صفرا سبب بهبود میانگین تولید شیر، مقدار چربی، پروتئین، لاکتوز، شیر تصحیح شده بر اساس 5/3 درصد چربی، مقدار تولید اسیدهای چرب دنوو، مخلوط، پریفورمد، اسیدهای چرب اشباع، اسیدهای چرب غیراشباع، اسیدهای چرب با یک پیوند دوگانه، اسیدهای چرب با چند پیوند دوگانه، اسید پالمتیک، اسید استئاریک و اسید اولئیک شدند (05/0 ≥P). افزودن ترکیبات امولسیونکننده در مکملهای چربی جیره غذایی گاوهای شیرده پرتولید، احتمالاً اثرات مثبتی برعملکرد تولیدی و ترکیبات شیر دارد. | ||
کلیدواژهها | ||
امولسیونکننده؛ پودر صفرا؛ لسیتین؛ چربی؛ گاو شیری | ||
مراجع | ||
REFERENCES Abel-Caines, S. F., Grant, R. J., & Morrison, M. (1998). Effect of soybean hulls, soy lecithin, and soapstock mixtures on ruminal fermentation and milk composition in dairy cows. Journal of Dairy Science, 81(2), 462-470. https://doi.org/10.3168/jds.S0022-0302(98)75598-5 Alzawqari, M., Moghaddam, H. N., Kermanshahi, H., & Raji, A. R. (2011). The effect of desiccated ox bile supplementation on performance, fat digestibility, gut morphology and blood chemistry of broiler chickens fed tallow diets. Journal of Applied Animal Research, 39(2), 169-174. AOAC. (2006). Official Methods of Analysis (18 ed.). Association of Official Analytical Chemists. Barbano, D., Melilli, C., & Overton, T. (2014). Advanced use of FTIR spectra of milk for feeding and health management. Boerman, J., Firkins, J., St-Pierre, N., & Lock, A. (2015). Intestinal digestibility of long-chain fatty acids in lactating dairy cows: A meta-analysis and meta-regression. Journal of Dairy Science, 98(12), 8889-8903. Brautigan, D., Li, R., Kubicka, E., Turner, S., Garcia, J., Weintraut, M., & Wong, E. (2017). Lysolecithin as feed additive enhances collagen expression and villus length in the jejunum of broiler chickens. Journal of Poultry Science, 96(8), 2889-2898. Carraro, P. C., Da Silva, E. D., & Oliveira, D. E. (2019). Palmitic acid increases the abundance of mRNA of genes involved in de novo synthesis of fat in mammary explants from lactating ewes. Small Ruminant Research, 174, 99-102. https://doi.org/https://doi.org/10.1016/j.smallrumres.2019.02.020 Cao, A. Z., Lai, W. Q., Zhang, W. W., Dong, B., Lou, Q. Q., Han, M. M., Zhang, L. Y. (2021). Effects of porcine bile acids on growth performance, antioxidant capacity, blood metabolites and nutrient digestibility of weaned pigs. Animal Feed Science and Technology, 276, 114931. https://doi.org/https://doi.org/10.1016/j.anifeedsci.2021.114931 Chamberlain, M., & DePeters, E. (2017). Impacts of feeding lipid supplements high in palmitic acid or stearic acid on performance of lactating dairy cows. Journal of Applied Animal Research, 45(1), 126-135. Chen, Y., Yuan, C., Yang, T., Song, H., Zhan, K., & Zhao, G. (2024). Effects of bile acid supplementation on lactation performance, nutrient intake, antioxidative status, and serum biochemistry in mid-lactation dairy cows. Animals, 14(2), 290. https://www.mdpi.com/2076-2615/14/2/290 Daley, V. L., Armentano, L., Kononoff, P., & Hanigan, M. D. (2020). Modeling fatty acids for dairy cattle: Models to predict total fatty acid concentration and fatty acid digestion of feedstuffs. Journal of Dairy Science, 103(8), 6982-6999. de Beni Arrigoni, M., Martins, C. L., & Factori, M. A. (2016). Lipid metabolism in the rumen. Rumenology, 103-126. de Diego-Cabero, N., Mereu, A., Menoyo, D., Holst, J. J., & Ipharraguerre, I. R. (2015). Bile acid mediated effects on gut integrity and performance of early-weaned piglets. BMC Veterinary Research, 11, 111. https://doi.org/10.1186/s12917-015-0425-6 de Souza, J., Garver, J., Preseault, C., & Lock, A. (2017). Effects of prill size of a palmitic acid–enriched fat supplement on the yield of milk and milk components, and nutrient digestibility of dairy cows. Journal of Dairy Science, 100(1), 379-384. de Souza, J., Westerrn, M., & Lock, A. L. (2020). Abomasal infusion of an exogenous emulsifier improves fatty acid digestibility and milk fat yield of lactating dairy cows. Journal of Dairy Science, 103(7), 6167-6177. https://doi.org/https://doi.org/10.3168/jds.2020-18239 di Gregorio, M. C., Cautela, J., & Galantini, L. (2021). Physiology and physical chemistry of bile acids. International Journal of Molecular Sciences, 22(4), 1780. https://www.mdpi.com/1422-0067/22/4/1780 Ding, T., Xu, N., Liu, Y., Du, J., Xiang, X., Xu, D., Mai, K. (2020). Effect of dietary bile acid (BA) on the growth performance, body composition, antioxidant responses and expression of lipid metabolism-related genes of juvenile large yellow croaker (Larimichthys crocea) fed high-lipid diets. Aquaculture, 518, 734768. Doreau, M., Meynadier, A., Fievez, V., & Ferlay, A. (2016). Ruminal metabolism of fatty acids: Modulation of polyunsaturated, conjugated, and trans fatty acids in meat and milk. Lipids in Human Function, 521-542. Elsevier. Eastridge, M., & Firkins, J. (2000). Feeding tallow triglycerides of different saturation and particle size to lactating dairy cows. Animal Feed Science and Technology, 83 (3-4), 249-259. Fontoura, A., Rico, J., Davis, A., Myers, W., Tate, B., Gervais, R., & McFadden, J. (2021). Effects of dietary deoiled soy lecithin supplementation on milk production and fatty acid digestibility in Holstein dairy cows. Journal of Dairy Science, 104(2), 1823-1837. Freitas Jr, J., Takiya, C. S., Del Valle, T. A., Barletta, R. V., Venturelli, B. C., Vendramini, T. H. A., Gandra, J. R. (2018). Ruminal biohydrogenation and abomasal flow of fatty acids in lactating cows fed diets supplemented with soybean oil, whole soybeans, or calcium salts of fatty acids. Journal of Dairy Science, 101(9), 7881-7891. Gao, Y., Yao, Y., Huang, J., Sun, Y., Wu, Q., Guo, D., & Wang, S. (2023). Effect of dietary bile acids supplementation on growth performance, feed utilization, intestinal digestive enzyme activity and fatty acid transporters gene expression in juvenile leopard coral grouper (Plectropomus leopardus). Frontiers in Marine Science, 10, 1171344. Lai, W., Cao, A., Li, J., Zhang, W., & Zhang, L. (2018). Effect of high dose of bile acids supplementation in broiler feed on growth performance, clinical blood metabolites, and organ development. Journal of Applied Poultry Research, 27(4), 532-539. Lai, W., Huang, W., Dong, B., Cao, A., Zhang, W., Li, J., Zhang, L. (2018). Effects of dietary supplemental bile acids on performance, carcass characteristics, serum lipid metabolites and intestinal enzyme activities of broiler chickens. Poultry Science, 97(1), 196-202. https://doi.org/https://doi.org/10.3382/ps/pex288 Lee, C., Morris, D., Copelin, J., Hettick, J., & Kwon, I. (2019). Effects of lysophospholipids on short-term production, nitrogen utilization, and rumen fermentation and bacterial population in lactating dairy cows. Journal of Dairy Science, 102(4), 3110-3120. Loften, J. R., Linn, J. G., Drackley, J. K., Jenkins, T. C., Soderholm, C. G., & Kertz, A. F. (2014). Invited review: Palmitic and stearic acid metabolism in lactating dairy cows. Journal of Dairy Science, 97(8), 4661-4674. https://doi.org/https://doi.org/10.3168/jds.2014-7919 Lohrenz, A. K., Duske, K., Schneider, F., Nürnberg, K., Losand, B., Seyfert, H. M., Hammon, H. M. (2010). Milk performance and glucose metabolism in dairy cows fed rumen-protected fat during mid lactation. Journal of Dairy Science, 93(12), 5867-5876. https://doi.org/https://doi.org/10.3168/jds.2010-3342 Macierzanka, A., Torcello-Gómez, A., Jungnickel, C., & Maldonado-Valderrama, J. (2019). Bile salts in digestion and transport of lipids. Advances in Colloid and Interface Science, 274, 102045. https://doi.org/https://doi.org/10.1016/j.cis.2019.102045 McFadden, J. (2019). Dietary lecithin supplementation in dairy cattle. Nardi, R. d., Marchesini, G., Tenti, S., Contiero, B., Andrighetto, I., & Segato, S. (2012). Lecithin as a supplement for mid-lactating dairy cows. Acta Agriculturae Slovenica, 100(Suppl. 3), 67-70. NRC. (2021). Nutrient requirements of dairy cattle: Eighth revised edition. The National Academies Press. https://doi.org/doi:10.17226/25806 Palmquist, D., & Jenkins, T. (2017). A 100-Year Review: Fat feeding of dairy cows. Journal of Dairy Science, 100(12), 10061-10077. Piantoni, P., Lock, A. L., & Allen, M. S. (2013). Palmitic acid increased yields of milk and milk fat and nutrient digestibility across production level of lactating cows. Journal of Dairy Science, 96(11), 7143-7154. https://doi.org/https://doi.org/10.3168/jds.2013-6680 Polycarpo, G. V., Burbarelli, M. F., CarÃo, A. C., Merseguel, C. E., Dadalt, J. C., Maganha, S. R., Albuquerque, R. (2016). Effects of lipid sources, lysophospholipids and organic acids in maize-based broiler diets on nutrient balance, liver concentration of fat-soluble vitamins, jejunal microbiota and performance. British Poulty Science, 57(6), 788-798. https://doi.org/10.1080/00071668.2016/11219019 Porter, N. (2023). Feeding fatty acids with lysophospholipids to improve production efficiency of lactating dairy cows. The Ohio State University. Rabiee, A., Breinhild, K., Scott, W., Golder, H., Block, E., & Lean, I. (2012). Effect of fat additions to diets of dairy cattle on milk production and components: A meta-analysis and meta-regression. Journal of Dairy Science, 95(6), 3225-3247. Rico, D., Ying, Y., & Harvatine, K. (2017). Effects of lysolecithin on milk fat synthesis and milk fatty acid profile of cows fed diets differing in fiber and unsaturated fatty acid concentration. Journal of Dairy Science, 100(11), 9042-9047. Rico, J., Fontoura, A., Tate, B., & McFadden, J. (2019). Effects of soy lecithin on circulating choline metabolite concentrations and phosphatidylcholine profile in Holstein cows. Journal of Dairy Science, 102, 385-385. Rico, J. E., Allen, M. S., & Lock, A. L. (2014). Compared with stearic acid, palmitic acid increased the yield of milk fat and improved feed efficiency across production level of cows. Journal of Dairy Science, 97(2), 1057-1066. https://doi.org/https://doi.org/10.3168/jds.2013-7432 Roche, J. R., Kay, J. K., Friggens, N. C., Loor, J. J., & Berry, D. P. (2013). Assessing and managing body condition score for the prevention of metabolic disease in dairy cows. Veterinary Clinics: Food Animal Practice, 29(2), 323-336. Song, P., Zhang, Y., & Klaassen, C. D. (2011). Dose-response of five bile acids on serum and liver bile Acid concentrations and hepatotoxicty in mice. Toxicol Science, 123(2), 359-367. https://doi.org/10.1093/toxsci/kfr177 Van Soest, P. J., Robertson, J. B., & Lewis, B. A. (1991). Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. Journal of Dairy Science, 74(10), 3583-3597. https://doi.org/https://doi.org/10.3168/jds.S0022-0302(91)78551-2 Vargas-Bello-Pérez, E., Cancino-Padilla, N., Geldsetzer-Mendoza, C., Morales, M. S., Leskinen, H., Garnsworthy, P. C., Romero, J. (2020). Effects of dietary polyunsaturated fatty acid sources on expression of lipid-related genes in bovine milk somatic cells. Scientific Reports, 10(1), 14850. Western, M. M., de Souza, J., & Lock, A. L. (2020). Effects of commercially available palmitic and stearic acid supplements on nutrient digestibility and production responses of lactating dairy cows. Journal of Dairy Science, 103(6), 5131-5142. Wettstein, H. R., Scheeder, M. R., Sutter, F., & Kreuzer, M. (2001). Effect of lecithins partly replacing rumen‐protected fat on fatty acid digestion and composition of cow milk. European Journal of Lipid Science and Technology, 103(1), 12-22. Zhang, M., Bai, H., Zhao, Y., Wang, R., Li, G., Zhang, G., & Zhang, Y. (2022). Effects of dietary lysophospholipid inclusion on the growth performance, nutrient digestibility, nitrogen utilization, and blood metabolites of finishing beef cattle. Antioxidants, 11(8), 1486. Zhao, P. Y., & Kim, I. H. (2017). Effect of diets with different energy and lysophospholipids levels on performance, nutrient metabolism, and body composition in broilers. Poultry Science, 96(5), 1341-1347. https://doi.org/https://doi.org/10.3382/ps/pew469 Zhao, P. Y., Li, H. L., Hossain, M. M., & Kim, I. H. (2015). Effect of emulsifier (lysophospholipids) on growth performance, nutrient digestibility and blood profile in weanling pigs. Animal Feed Science and Technology, 207, 190-195. https://doi.org/https://doi.org/10.1016/j.anifeedsci.2015.06.007 Zhao, P., Zhang, Z., Lan, R., Liu, W., & Kim, I. (2017). Effect of lysophospholipids in diets differing in fat contents on growth performance, nutrient digestibility, milk composition and litter performance of lactating sows. Animal, 11(6), 984-990. Zhou, P., Yan, H., Zhang, Y., Qi, R., Zhang, H., & Liu, J. (2023). Growth performance, bile acid profile, fecal microbiome and serum metabolomics of growing-finishing pigs fed diets with bile acids supplementation. Journal of Animal Science, 101. https://doi.org/10.1093/jas/skad393 | ||
آمار تعداد مشاهده مقاله: 254 تعداد دریافت فایل اصل مقاله: 116 |