- Jiao, J. L., Zhang, J. L., & Tang, Y. S. (2010, May). A model for the optimization of the petroleum supply chain in China and its empirical analysis. In 2010 International conference on e-business and e-government (pp. 3327-3330). IEEE.
- Chen, J., Lu, J., & Qi, S. (2010, August). Transportation network optimization of import crude oil in China based on minimum logistics cost. In 2010 IEEE International Conference on Emergency Management and Management Sciences (pp. 335-338). IEEE.
- Lu, M. (2010). Rock engineering problems related to underground hydrocarbon storage. Journal of Rock Mechanics and Geotechnical Engineering, 2(4), 289-297.
- Susarla, N., & Karimi, I. A. (2012). Intelligent Decision-Support Tools for Effective and Integrated Operational Planning in Pharmaceutical Plants. In Computer Aided Chemical Engineering (Vol. 31, pp. 1165-1169). Elsevier.
- Gupta, V., & Grossmann, I. E. (2012). An efficient multiperiod MINLP model for optimal planning of offshore oil and gas field infrastructure. Industrial & Engineering Chemistry Research, 51(19), 6823-6840.
- Aizemberg, L., Kramer, H. H., Pessoa, A. A., & Uchoa, E. (2014). Formulations for a problem of petroleum transportation. European Journal of Operational Research, 237(1), 82-90.
- Nasab, N. M., & Amin-Naseri, M. R. (2016). Designing an integrated model for a multi-period, multi-echelon and multi-product petroleum supply chain. Energy, 114, 708-733.
- Liang, C., Li, M., Lu, B., Gu, T., Jo, J., & Ding, Y. (2017). Dynamic configuration of QC allocating problem based on multi-objective genetic algorithm. Journal of Intelligent Manufacturing, 28, 847-855.
- Rocha, R., Grossmann, I. E., & de Aragão, M. V. P. (2017). Petroleum supply planning: reformulations and a novel decomposition algorithm. Optimization and Engineering, 18, 215-240.
- Ghaithan, A. M., Attia, A., & Duffuaa, S. O. (2017). Multi-objective optimization model for a downstream oil and gas supply chain. Applied Mathematical Modelling, 52, 689-708.
- Rahimi, M., Shahhosseini, S., Sobati, M. A., Movahedirad, S., Khodaei, B., & Hassanzadeh, H. (2019). A novel multi-probe continuous flow ultrasound assisted oxidative desulfurization reactor; experimental investigation and simulation. Ultrasonics Sonochemistry, 56, 264-273.
- Attia, A. M., Ghaithan, A. M., & Duffuaa, S. O. (2019). A multi-objective optimization model for tactical planning of upstream oil & gas supply chains. Computers & chemical engineering, 128, 216-227.
- Kumar, S., & Mahapatra, R. P. (2021). Design of multi-warehouse inventory model for an optimal replenishment policy using a rain optimization algorithm. Knowledge-Based Systems, 231, 107406.
- Li, F., Qian, F., Du, W., Yang, M., Long, J., & Mahalec, V. (2021). Refinery production planning optimization under crude oil quality uncertainty. Computers & Chemical Engineering, 151, 107361.
- Ge, C., & Yuan, Z. (2021). Production scheduling for the reconfigurable modular pharmaceutical manufacturing processes. Computers & Chemical Engineering, 151, 107346.
- Sahoo, D., Tripathy, A. K., & Pati, J. K. (2022). Study on multi-objective linear fractional programming problem involving pentagonal intuitionistic fuzzy number. Results in Control and Optimization, 6, 100091.
- Zhao, F., Liu, Y., Lu, N., Xu, T., Zhu, G., & Wang, K. (2021). A review on upgrading and viscosity reduction of heavy oil and bitumen by underground catalytic cracking. Energy Reports, 7, 4249-4272.
- Buslaev, G., Morenov, V., Konyaev, Y., & Kraslawski, A. (2021). Reduction of carbon footprint of the production and field transport of high-viscosity oils in the Arctic region. Chemical Engineering and Processing-Process Intensification, 159, 108189.
- Pettersson, M., Olofsson, J., Börjesson, P., & Björnsson, L. (2022). Reductions in greenhouse gas emissions through innovative co-production of bio-oil in combined heat and power plants. Applied Energy, 324, 119637.
- Scrimieri, D., Adalat, O., Afazov, S., & Ratchev, S. (2022). Modular reconfiguration of flexible production systems using machine learning and performance estimates. IFAC-PapersOnLine, 55(10), 353-358.
- Komesker, S., Motsch, W., Popper, J., Sidorenko, A., Wagner, A., & Ruskowski, M. (2022). Enabling a multi-agent system for resilient production flow in modular production systems. Procedia CIRP, 107, 991-998.
- Alnaqbi, A., Dweiri, F., & Chaabane, A. (2022). Impact of horizontal mergers on supply chain performance: The case of the upstream oil and gas industry. Computers & Chemical Engineering, 159, 107659.
- Motahari, R., Alavifar, Z., Andaryan, A. Z., Chipulu, M., & Saberi, M. (2023). A multi-objective linear programming model for scheduling part families and designing a group layout in cellular manufacturing systems. Computers & Operations Research, 151, 106090.
- Sang, M., Ding, Y., Bao, M., Song, Y., & Wang, P. (2022). Enhancing resilience of integrated electricity-gas systems: A skeleton-network based strategy. Advances in Applied Energy, 7, 100101.
- Vafadarnikjoo, A., Moktadir, M. A., Paul, S. K., & Ali, S. M. (2023). A novel grey multi-objective binary linear programming model for risk assessment in supply chain management. Supply Chain Analytics, 2, 100012.
- AlEdan, A. B., & Erfani, T. (2023). Sustainable produced water supply chain design and optimisation: Trading-off the economic cost and environmental impact in Kuwait oil company. Journal of Cleaner Production, 136185.
- Kumar, N., Tyagi, M., Sachdeva, A., & Walia, R. S. (2023). Analyzing the thermal, economic, and environmental dynamics of phase change materials used in cold chain applications. Materials Today: Proceedings.
- Wang, J., Swartz, C. L., & Huang, K. (2023). Deep learning-based model predictive control for real-time supply chain optimization. Journal of Process Control, 129, 103049.
- Ratner, S., Balashova, S., Revinova, S. (2024). Assessing the sustainability of hydrogen supply chains using network Data Envelopment Analysis. Procedia Computer Science, Volume 232, 2024, Pages 1626-1635.
- Avellaneda, J.A.C., Rodriguez, A.U., Yanez, E., Rey, R.M. (2024). Assessment of the Colombian long-term energy planning scenarios for the national hydrocarbon value chain: Insights from the TIMES-O&G model. Energy Conversion and Management, Volume 306, 15 April 2024, 118317.
- Najafi, M., Zolfagharinia, H., Rostami, S., Rafiee, M.(2024). Enhancing supply chain resilience facing partial and complete disruptions: The application in the cooking oil industry. Applied Mathematical Modelling Volume 131, July 2024, Pages 253-287.
- Attia, M.A.(2021). A multi-objective robust optimization model for upstream hydrocarbon supply chain. Alexandria Engineering Journal Volume 60, Issue 6, December 2021, Pages 5115-5127.
- Alnaqbi, A., Trochu, J., Dweiri, F., Chaabane, A.(2023). Tactical supply chain planning after mergers under uncertainty with an application in oil and gas. Computers & Industrial Engineering Volume 179, May 2023, 109176.
- Pishvaee, M.S., Torabi, S.A., Razmi, J. (2012). Credibility-based fuzzy mathematical programming model for green logistics design under uncertainty. Computers & Industrial Engineering Volume 62, Issue 2, March 2012, Pages 624-632.
|