تعداد نشریات | 162 |
تعداد شمارهها | 6,696 |
تعداد مقالات | 72,310 |
تعداد مشاهده مقاله | 129,514,597 |
تعداد دریافت فایل اصل مقاله | 102,309,810 |
Effect of Coumestrol Supplementation on Ovine Semen Cryopreservation | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 3، دوره 19، شماره 2، تیر 2025، صفحه 191-202 اصل مقاله (1.18 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.2.1005551 | ||
نویسندگان | ||
Doaa Hosny Elsayed1؛ Laila Esmael Kortam2؛ Heba Mohamed Ahmed Abdelrazek3؛ Ahmed Monir* 4 | ||
1Department of Theriogenology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt. | ||
2Immunity Unit, Agriculture Research Center (ARC), Animal Reproduction Research Institute, Giza, Egypt. | ||
3Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt. | ||
4Department of Artificial Insemination and Embryo Transfer, Agriculture Research Center (ARC), Animal Reproduction Research Institute, Giza, Egypt. | ||
چکیده | ||
Background: Antioxidant supplementation promotes the fertilizing capacity of post-thawed ram spermatozoa. Objectives: This study was designed to validate the effect of different levels of coumestrol as an antioxidant on post-thawing parameters of cryopreserved spermatozoa in rams. Methods: A total of 60 ejaculates were collected from six sexually mature Barki rams. The accepted semen samples were extended, pooled, cooled, and then divided into five aliquots: A control group (tris-based egg yolk extender) without coumestrol addition, and 4 aliquots with concentrations of 0.1, 1, 10, and 100 µM of coumestrol. These aliquots were then subjected to the cryopreservation process. The control and treated frozen semen were thawed and assessed for motility using computer-assisted sperm analysis (CASA), total antioxidant capacity (TAC), malondialdehyde (MDA) levels, mitochondrial activity, comet assay for DNA integrity, acrosome integrity, and casein kinase 2 alpha 2 (CK2α2) gene expression. Results: The addition of 1 µM of coumestrol significantly improved progressive motility. Metabolic activity was significantly higher in semen treated with 1, 10, and 100 µM coumestrol compared to control and 0.1 µM coumestrol groups. Furthermore, acrosome integrity was significantly higher in the 0.1 and 1 µM of coumestrol groups. In the 1, 10, and 100 µM coumestrol groups, TAC was significantly higher than in controls. Furthermore, MDA levels were significantly lower in all coumestrol groups compared to the controls. The comet assay exhibited a significant reduction in fragmented DNA in semen treated with coumestrol, especially with the addition of 1 µM coumestrol. The expression of CK2α2 showed a significant fold decline in semen supplemented with 10 and 100 µM coumestrol compared to the control group. Conclusion: The addition of 1 µM of coumestrol could ameliorate the deleterious impacts of cryo-damage by improving the sperm antioxidant capacity, mitochondrial activity, and both acrosome and DNA integrity. | ||
کلیدواژهها | ||
Casein kinase-2 expression؛ Coumestrol؛ Cryopreservation؛ Mitochondrial activity؛ Ovine semen | ||
اصل مقاله | ||
Introduction
Abdel-Rahman, H. A., El-Belely, M. S., Al-Qarawi, A. A., & El-Mougy, S. A. (2000). The relationship between semen quality and mineral composition of semen in various ram breeds. Small Ruminant Research : The Journal of The International Goat Association, 38(1), 45–49. [DOI:1016/s0921-4488(00)00137-1] [PMID] Abdollahi, Z., Zeinoaldini, S., Zhandi, M., Towhidi, A., & Baghshahi, H. (2021). Supplementation of plant-based cryopreservation medium with folic acid conserves the quality of bulk post-thawed spermatozoa. Archives of Razi Institute, 76(3), 553-559. [PMID] Aitken, R. J., Gibb, Z., Mitchell, L. A., Lambourne, S. R., Connaughton, H. S., & De Iuliis, G. N. (2012). Sperm motility is lost in vitro as a consequence of mitochondrial free radical production and the generation of electrophilic aldehydes but can be significantly rescued by the presence of nucleophilic thiols. Biology of Reproduction, 87(5), 110. [DOI:1095/biolreprod.112.102020] [PMID] Altyeb, Y. H., Absy, G., Medan, M. S., Hassan, S. T., & Elsayed, D. H. (2022). Influence of cysteine and L-carnitine on post-thaw sperm criteria of frozen buck semen with respect to DNA integrity. Iran J Vet Res. 23(3), 196-203. PMID: 36425604. Baier, A., & Szyszka, R. (2020). Compounds from natural sources as protein kinase inhibitors. Biomolecules, 10(11), 1546.[DOI:3390/biom10111546] [PMID] Bernecic, N. C., Donnellan, E., O'Callaghan, E., Kupisiewicz, K., O'Meara, C., & Weldon, K., et al. (2021). Comprehensive functional analysis reveals that acrosome integrity and viability are key variables distinguishing artificial insemination bulls of varying fertility. Journal of Dairy Science, 104(10), 11226–11241. [DOI:3168/jds.2021-20319] [PMID] Boccia, L., Di Palo, R., De Rosa, A., Attanasio, L., Mariotti, E., & Gasparrini, B. (2007). Evaluation of buffalo semen by Trypan blue/Giemsa staining and related fertility in vitro. Italian Journal of Animal Science, 6(sup2), 739-742. [DOI:10.4081/ijas.2007.s2.739] Bogle, O. A., Kumar, K., Attardo-Parrinello, C., Lewis, S. E., Estanyol, J. M., & Ballescà, J. L., et al. (2017). Identification of protein changes in human spermatozoa throughout the cryopreservation process. Andrology, 5(1), 10-22. [DOI:1111/andr.12279] [PMID] Bucak, M. N., Tuncer, P. B., Sarıözkan, S., Başpınar, N., Taşpınar, M., & Coyan, K., et al. (2010). Effects of antioxidants on post-thawed bovine sperm and oxidative stress parameters: Antioxidants protect DNA integrity against cryodamage. Cryobiology, 61(3), 248–253. [DOI:1016/j.cryobiol.2010.09.001] [PMID] Buranaamnuay, K. (2021). The MTT assay application to measure the viability of spermatozoa: A variety of the assay protocols. Open Veterinary Journal, 11(2), 251–269. [DOI:5455/OVJ.2021.v11.i2.9][PMID] Chandsawangbhuwana, C., & Baker, M. E. (2014). 3D models of human ERα and ERβ complexed with coumestrol. Steroids, 80, 37–43. [DOI:1016/j.steroids.2013.11.019] [PMID] Cirit, Ü., Bağiş, H., Demir, K., Agca, C., Pabuccuoğlu, S., & Varişli, Ö., et al. (2013). Comparison of cryoprotective effects of iodixanol, trehalose and cysteamine on ram semen. Animal Reproduction Science, 139(1-4), 38–44. [DOI:1016/j.anireprosci.2013.03.010] [PMID] Dabrowska, N., & Wiczkowski, A. (2017). Analytics of oxidative stress markers in the early diagnosis of oxygen DNA damage. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University, 26(1), 155–166. [DOI:17219/acem/43272] [PMID] Di Santo, M., Tarozzi, N., Nadalini, M., & Borini, A. (2012). Human sperm cryopreservation: Update on techniques, effect on DNA integrity, and implications for ART. Advances in Urology, 2012,[DOI:10.1155/2012/854837][PMID] Diplock, A. T. (1994). Antioxidants and disease prevention. Molecular Aspects of Medicine, 15(4), 293–376. [DOI:1016/0098-2997(94)90005-1] [PMID] Elsayed, D. H., El-Shamy, A. A., Abdelrazek, H. M., & El-Badry, D. A. (2019). Effect of genistein on semen quality, antioxidant capacity, caspase-3 expression and DNA integrity in cryopreserved ram spermatozoa. Small Ruminant Research, 177, 50-55.[DOI:1016/j.smallrumres.2019.06.009] Hussein Zwamel, A., Muhammad-Rashad Fakhrildin, M. B., & Hadi Hassani, H. (2023). New Technique for Human Sperm Cryopreservation Using Emptied Sheep’s Ovarian Follicles. Archives of Razi Institute, 78(2), 721–727. [PMID] Fickel, J., Wagener, A., & Ludwig, (2007). Semen cryopreservation and the conservation of endangered species. European Journal of Wildlife Research, 53, 81-89. [Link] Figueroa, E., Merino, O., Risopatrón, J., Isachenko, V., Sánchez, R., & Effer, B., et al. (2015). Effect of seminal plasma on Atlantic salmon (Salmo salar) sperm vitrification. Theriogenology, 83(2), 238–45.e2. [DOI:1016/j.theriogenology.2014.09.015] [PMID] Gallo, A., Manfra, L., Boni, R., Rotini, A., Migliore, L., & Tosti, E. (2018). Cytotoxicity and genotoxicity of CuO nanoparticles in sea urchin spermatozoa through oxidative stress. Environment International, 118, 325–333. [DOI:1016/j.envint.2018.05.034] [PMID] Gimeno-Martos, S., González-Arto, M., Casao, A., Gallego, M., Cebrián-Pérez, J. A., & Muiño-Blanco, T., et (2017). Steroid hormone receptors and direct effects of steroid hormones on ram spermatozoa. Reproduction (Cambridge, England), 154(4), 469–481. [DOI:10.1530/REP-17-0177] [PMID] Gürler, H., Malama, E., Heppelmann, M., Calisici, O., Leiding, C., & Kastelic, J. P., et al. (2016). Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm. Theriogenology, 86(2), 562-571. [DOI:1016/j.theriogenology.2016.02.007] [PMID] Hughes, C. M., Lewis, S. E., McKelvey-Martin, V. J., & Thompson, W. (1996). A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Molecular Human Reproduction, 2(8), 613–619. [DOI:1093/molehr/2.8.613] [PMID] Hutabarat, L. S., Greenfield, H., & Mulholland, M. (2001). Isoflavones and coumestrol in soybeans and soybean products from Australia and Indonesia. Journal of Food Composition and Analysis, 14(1), 43-58. [DOI:1006/jfca.2000.0948] Irwin, R. W., Yao, J., To, J., Hamilton, R. T., Cadenas, E., & Brinton, R. D. (2012). Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function. Journal of Neuroendocrinology, 24(1), 236–248. [PMID] [DOI:1111/j.1365-2826.2011.02251.x] Isaac, A. V., Kumari, S., Nair, R., Urs, D. R., Salian, S. R., & Kalthur, G., et al. (2017). Supplementing zinc oxide nanoparticles to cryopreservation medium minimizes the freeze-thaw-induced damage to spermatozoa. Biochemical and Biophysical Research Communications, 494(3-4), 656–662. [DOI:1016/j.bbrc.2017.10.112] [PMID] Jang, Y. J., Son, H. J., Ahn, J., Jung, C. H., & Ha, T. (2016). Coumestrol modulates Akt and Wnt/β-catenin signaling during the attenuation of adipogenesis. Food & Function, 7(12), 4984–4991. [DOI:10.1039/C6FO01127F] [PMID] Jumintono, J., Alkubaisy, S., Yánez Silva, D., Singh, K., Turki Jalil, A., & Mutia Syarifah, S., et al. (2021). Effect of cystamine on sperm and antioxidant parameters of ram semen stored at 4 C for 50 hours. Archives of Razi Institute, 76(4), 1115–1123. [PMID] Kanno, S., Hirano, S., & Kayama, F. (2004). Effects of the phytoestrogen coumestrol on RANK-ligand-induced differentiation of osteoclasts. Toxicology, 203(1-3), 211-220. [DOI:1016/j.tox.2004.06.015] [PMID] Koirala, P., Seong, S. H., Jung, H. A., & Choi, J. S. (2018). Comparative evaluation of the antioxidant and anti-alzheimer’s disease potential of coumestrol and puerarol isolated from pueraria lobata using molecular modeling studies. Molecules (Basel, Switzerland), 23(4), 785. [DOI:3390/molecules23040785] [PMID] Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S., & Cosic, V. (2001). Method for the measurement of antioxidant activity in human fluids. Journal of Clinical Pathology, 54(5), 356–361. [DOI:1136/jcp.54.5.356] [PMID] Kuiper, G. G., Carlsson, B., Grandien, K., Enmark, E., Häggblad, J., & Nilsson, S., et al. (1997). Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology, 138(3), 863–870. [DOI:1210/endo.138.3.4979] [PMID] Kumar, R., Jagan Mohanarao, G., Arvind, & Atreja, S. K. (2011). Freeze-thaw induced genotoxicity in buffalo (Bubalus bubalis) spermatozoa in relation to total antioxidant status. Molecular Biology Reports, 38(3), 1499–1506. [DOI:1007/s11033-010-0257-1] [PMID] Kumar, S., Millar, J. D., & Watson, P. F. (2003). The effect of cooling rate on the survival of cryopreserved bull, ram, and boar spermatozoa: A comparison of two controlled-rate cooling machines. Cryobiology, 46(3), 246–253. [DOI:1016/s0011-2240(03)00040-3] [PMID] Mannowetz, N., Kartarius, S., Wennemuth, G., & Montenarh, M. (2010). Protein kinase CK2 and new binding partners during spermatogenesis. Cellular and Molecular Life Sciences: CMLS, 67(22), 3905–3913. [DOI:1007/s00018-010-0412-9] [PMID] Martínez-Pastor, F., Aisen, E., Fernández-Santos, M. R., Esteso, M. C., Maroto-Morales, A., & García-Alvarez, O., et al. (2009). Reactive oxygen species generators affect quality parameters and apoptosis markers differently in red deer spermatozoa. Reproduction (Cambridge, England), 137(2), 225–235. [DOI:10.1530/REP-08-0357] [PMID] Mesbah, M., Forouzanfar, M., & Eghbalsaied, S. (2022). Supplementation of estradiol into semen extender improved goat sperm cryopreservation. Biopreservation and biobanking, 20(1), 59–66. [DOI:1089/bio.2020.0169] [PMID] Mitchell, J. H., Cawood, E., KInniburgh, D., Provan, A., Collins, A. R., & Irvine, D. S. (2001). Effect of a phytoestrogen food supplement on reproductive health in normal males. Clinical Science (London, England: 1979), 100(6), 613–618. [PMID] Mitchell, J. H., Gardner, P. T., McPhail, D. B., Morrice, P. C., Collins, A. R., & Duthie, G. G. (1998). Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Archives of Biochemistry and Biophysics, 360(1), 142–148. [DOI:1006/abbi.1998.0951] [PMID] Momeni, H. R., Abnosi, M. H., & Eskandari, N. (2020). Quantitative evaluation of human sperm viability using MTT assay: A laboratory study. International Journal of Reproductive Biomedicine, 18(11), 983–988. [DOI:18502/ijrm.v13i11.7966] [PMID] Mondal, S., & Rahaman, S. (2020). Flavonoids: A vital resource in healthcare and medicine. Pharmacy & Pharmacology International Journal, 8(2), 91-104. [DOI:10.15406/ppij.2020.08.00285] Moreira, A. C., Silva, A. M., Branco, A. F., Baldeiras, I., Pereira, G. C., & Seiça, R., et al. (2017). Phytoestrogen coumestrol improves mitochondrial activity and decreases oxidative stress in the brain of ovariectomized Wistar-Han rats. Journal of Functional Foods, 34, 329-339. [DOI:1016/j.jff.2017.05.002] Mostek, A., Dietrich, M. A., Słowińska, M., & Ciereszko, A. (2017). Cryopreservation of bull semen is associated with carbonylation of sperm proteins. Theriogenology, 92, 95–102.[DOI:1016/j.theriogenology.2017.01.011] [PMID] Noegroho, B. S., Siregar, S., & Tampubolon, K. A. G. (2022). Antioxidant supplementation on sperm DNA fragmentation and sperm parameters: A systematic review and meta-analysis. Turkish Journal of Urology, 48(5), 375–384. [DOI:5152/tud.2022.22058] [PMID] Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. [DOI:1016/0003-2697(79)90738-3] [PMID] Park, G., Baek, S., Kim, J. E., Lim, T. G., Lee, C. C., & Yang, H., et al. (2015). Flt3 is a target of coumestrol in protecting against UVB-induced skin photoaging. Biochemical Pharmacology, 98(3), 473–483. [DOI:1016/j.bcp.2015.08.104] [PMID] Pool, K. R., Kent, T. C., & Blache, D. (2021). Oestrogenic metabolite equol negatively impacts the functionality of ram spermatozoa in vitro. Theriogenology, 172, 216–222. [DOI:1016/j.theriogenology.2021.07.005] [PMID] Psarra, A. M. G., & Sekeris, C. E. (2008). Steroid and thyroid hormone receptors in mitochondria. IUBMB Life, 60(4), 210–223.[DOI:1002/iub.37] [PMID] Reddy, V. S., Yadav, B., Yadav, C. L., Anand, M., Swain, D. K., & Kumar, D., et al. (2018). Effect of sericin supplementation on heat shock protein 70 (HSP70) expression, redox status and post thaw semen quality in goat. Cryobiology, 84, 33–39. [DOI:1016/j.cryobiol.2018.08.005] [PMID] Sarıözkan, S., Bucak, M. N., Tuncer, P. B., Büyükleblebici, S., & Cantürk, F. (2014). Influence of various antioxidants added to TCM-199 on post-thaw bovine sperm parameters, DNA integrity and fertilizing ability. Cryobiology, 68(1), 129–133. [DOI:1016/j.cryobiol.2014.01.007] [PMID] Seo, D. B., Jeong, H. W., Lee, S. J., & Lee, S. J. (2014). Coumestrol induces mitochondrial biogenesis by activating Sirt1 in cultured skeletal muscle cells. Journal of Agricultural and Food Chemistry, 62(19), 4298–4305. [DOI:1021/jf404882w] [PMID] Sikka, S. C. (2001). Relative impact of oxidative stress on male reproductive function. Current Medicinal Chemistry, 8(7), 851–862. [DOI:2174/0929867013373039] [PMID] Tvrdá, E., Kováčik, A., Tušimová, E., Massányi, P., & Lukáč, N. (2015). Resveratrol offers protection to oxidative stress induced by ferrous ascorbate in bovine spermatozoa. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 50(14), 1440–1451. [DOI:1080/10934529.2015.1071153] [PMID] Varıslı, O., Erat, S., Bozkaya, F., Aydilek, N., & Taşkın, A., (2021). Impacts of specific cryoprotectants on sperm freezing and relationships between cryodamage and oxidation stress parameters in awassi ram sperm. Cryo Letters, 42(2), 87–95. [PMID] Vozaf, J., Svoradová, A., Baláži, A., Vašíček, J., Olexiková, L., & Dujíčková, L., et al. (2022). The cryopreserved sperm traits of various ram breeds: Towards biodiversity conservation. Animals, 12(10), 1311. [DOI:3390/ani12101311] [PMID] Wang, S., Wang, W., Xu, Y., Tang, M., Fang, J., & Sun, H., et al. (2014). Proteomic characteristics of human sperm cryopreservation. Proteomics, 14(2-3), 298–310. [DOI:1002/pmic.201300225] [PMID] Westfalewicz, B., Dietrich, M. A., & Ciereszko, A. (2015). Impact of cryopreservation on bull (Bos taurus) semen proteome. Journal of Animal Science, 93(11), 5240–5253. [DOI:2527/jas.2015-9237] [PMID] Xi, G. L., & Liu, Z. Q. (2014). Coumestan inhibits radical-induced oxidation of DNA: Is hydroxyl a necessary functional group? Journal of Agricultural and Food Chemistry, 62(24), 5636–5642. [DOI:1021/jf500013v] [PMID] Yadav, A., Singh, K. P., Singh, M. K., Saini, N., Palta, P., & Manik, R. S., et al. (2013). Effect of physiologically relevant heat shock on development, apoptosis and expression of some genes in buffalo (Bubalus bubalis) embryos produced in vitro. Reproduction in Domestic Animals = Zuchthygiene, 48(5), 858–865. [DOI:1111/rda.12175] [PMID] You, J. S., Cho, I. A., Kang, K. R., Oh, J. S., Yu, S. J., & Lee, G. J., et al. (2017). Coumestrol counteracts interleukin-1β-induced catabolic effects by suppressing inflammation in primary rat chondrocytes. Inflammation, 40(1), 79–91. [DOI:1007/s10753-016-0455-7] [PMID] Zafar, A., Singh, S., & Naseem, I. (2017). Cytotoxic activity of soy phytoestrogen coumestrol against human breast cancer MCF-7ácells: Insights into the molecular mechanism. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 99, 149–161. [DOI:1016/j.fct.2016.11.034] [PMID] Zsarnovszky, A., & Belcher, S. M. (2001). Identification of a developmental gradient of estrogen receptor expression and cellular localization in the developing and adult female rat primary somatosensory cortex. Developmental Brain Research, 129(1), 39–46. [DOI:1016/s0165-3806(01)00180-8] [PMID] | ||
مراجع | ||
Abdel-Rahman, H. A., El-Belely, M. S., Al-Qarawi, A. A., & El-Mougy, S. A. (2000). The relationship between semen quality and mineral composition of semen in various ram breeds. Small Ruminant Research : The Journal of The International Goat Association, 38(1), 45–49. [DOI:1016/s0921-4488(00)00137-1] [PMID]
Abdollahi, Z., Zeinoaldini, S., Zhandi, M., Towhidi, A., & Baghshahi, H. (2021). Supplementation of plant-based cryopreservation medium with folic acid conserves the quality of bulk post-thawed spermatozoa. Archives of Razi Institute, 76(3), 553-559. [PMID]
Aitken, R. J., Gibb, Z., Mitchell, L. A., Lambourne, S. R., Connaughton, H. S., & De Iuliis, G. N. (2012). Sperm motility is lost in vitro as a consequence of mitochondrial free radical production and the generation of electrophilic aldehydes but can be significantly rescued by the presence of nucleophilic thiols. Biology of Reproduction, 87(5), 110. [DOI:1095/biolreprod.112.102020] [PMID]
Altyeb, Y. H., Absy, G., Medan, M. S., Hassan, S. T., & Elsayed, D. H. (2022). Influence of cysteine and L-carnitine on post-thaw sperm criteria of frozen buck semen with respect to DNA integrity. Iran J Vet Res. 23(3), 196-203. PMID: 36425604.
Baier, A., & Szyszka, R. (2020). Compounds from natural sources as protein kinase inhibitors. Biomolecules, 10(11), 1546.[DOI:3390/biom10111546] [PMID]
Bernecic, N. C., Donnellan, E., O'Callaghan, E., Kupisiewicz, K., O'Meara, C., & Weldon, K., et al. (2021). Comprehensive functional analysis reveals that acrosome integrity and viability are key variables distinguishing artificial insemination bulls of varying fertility. Journal of Dairy Science, 104(10), 11226–11241. [DOI:3168/jds.2021-20319] [PMID]
Boccia, L., Di Palo, R., De Rosa, A., Attanasio, L., Mariotti, E., & Gasparrini, B. (2007). Evaluation of buffalo semen by Trypan blue/Giemsa staining and related fertility in vitro. Italian Journal of Animal Science, 6(sup2), 739-742. [DOI:10.4081/ijas.2007.s2.739]
Bogle, O. A., Kumar, K., Attardo-Parrinello, C., Lewis, S. E., Estanyol, J. M., & Ballescà, J. L., et al. (2017). Identification of protein changes in human spermatozoa throughout the cryopreservation process. Andrology, 5(1), 10-22. [DOI:1111/andr.12279] [PMID]
Bucak, M. N., Tuncer, P. B., Sarıözkan, S., Başpınar, N., Taşpınar, M., & Coyan, K., et al. (2010). Effects of antioxidants on post-thawed bovine sperm and oxidative stress parameters: Antioxidants protect DNA integrity against cryodamage. Cryobiology, 61(3), 248–253. [DOI:1016/j.cryobiol.2010.09.001] [PMID]
Buranaamnuay, K. (2021). The MTT assay application to measure the viability of spermatozoa: A variety of the assay protocols. Open Veterinary Journal, 11(2), 251–269. [DOI:5455/OVJ.2021.v11.i2.9][PMID]
Chandsawangbhuwana, C., & Baker, M. E. (2014). 3D models of human ERα and ERβ complexed with coumestrol. Steroids, 80, 37–43. [DOI:1016/j.steroids.2013.11.019] [PMID]
Cirit, Ü., Bağiş, H., Demir, K., Agca, C., Pabuccuoğlu, S., & Varişli, Ö., et al. (2013). Comparison of cryoprotective effects of iodixanol, trehalose and cysteamine on ram semen. Animal Reproduction Science, 139(1-4), 38–44. [DOI:1016/j.anireprosci.2013.03.010] [PMID]
Dabrowska, N., & Wiczkowski, A. (2017). Analytics of oxidative stress markers in the early diagnosis of oxygen DNA damage. Advances in Clinical and Experimental Medicine: Official Organ Wroclaw Medical University, 26(1), 155–166. [DOI:17219/acem/43272] [PMID]
Di Santo, M., Tarozzi, N., Nadalini, M., & Borini, A. (2012). Human sperm cryopreservation: Update on techniques, effect on DNA integrity, and implications for ART. Advances in Urology, 2012,[DOI:10.1155/2012/854837][PMID]
Diplock, A. T. (1994). Antioxidants and disease prevention. Molecular Aspects of Medicine, 15(4), 293–376. [DOI:1016/0098-2997(94)90005-1] [PMID]
Elsayed, D. H., El-Shamy, A. A., Abdelrazek, H. M., & El-Badry, D. A. (2019). Effect of genistein on semen quality, antioxidant capacity, caspase-3 expression and DNA integrity in cryopreserved ram spermatozoa. Small Ruminant Research, 177, 50-55.[DOI:1016/j.smallrumres.2019.06.009]
Hussein Zwamel, A., Muhammad-Rashad Fakhrildin, M. B., & Hadi Hassani, H. (2023). New Technique for Human Sperm Cryopreservation Using Emptied Sheep’s Ovarian Follicles. Archives of Razi Institute, 78(2), 721–727. [PMID]
Fickel, J., Wagener, A., & Ludwig, (2007). Semen cryopreservation and the conservation of endangered species. European Journal of Wildlife Research, 53, 81-89. [Link]
Figueroa, E., Merino, O., Risopatrón, J., Isachenko, V., Sánchez, R., & Effer, B., et al. (2015). Effect of seminal plasma on Atlantic salmon (Salmo salar) sperm vitrification. Theriogenology, 83(2), 238–45.e2. [DOI:1016/j.theriogenology.2014.09.015] [PMID]
Gallo, A., Manfra, L., Boni, R., Rotini, A., Migliore, L., & Tosti, E. (2018). Cytotoxicity and genotoxicity of CuO nanoparticles in sea urchin spermatozoa through oxidative stress. Environment International, 118, 325–333. [DOI:1016/j.envint.2018.05.034] [PMID]
GGimeno-Martos, S., González-Arto, M., Casao, A., Gallego, M., Cebrián-Pérez, J. A., & Muiño-Blanco, T., et (2017). Steroid hormone receptors and direct effects of steroid hormones on ram spermatozoa. Reproduction (Cambridge, England), 154(4), 469–481. [DOI:10.1530/REP-17-0177] [PMID]
Gürler, H., Malama, E., Heppelmann, M., Calisici, O., Leiding, C., & Kastelic, J. P., et al. (2016). Effects of cryopreservation on sperm viability, synthesis of reactive oxygen species, and DNA damage of bovine sperm. Theriogenology, 86(2), 562-571. [DOI:1016/j.theriogenology.2016.02.007] [PMID]
Hughes, C. M., Lewis, S. E., McKelvey-Martin, V. J., & Thompson, W. (1996). A comparison of baseline and induced DNA damage in human spermatozoa from fertile and infertile men, using a modified comet assay. Molecular Human Reproduction, 2(8), 613–619. [DOI:1093/molehr/2.8.613] [PMID]
Hutabarat, L. S., Greenfield, H., & Mulholland, M. (2001). Isoflavones and coumestrol in soybeans and soybean products from Australia and Indonesia. Journal of Food Composition and Analysis, 14(1), 43-58. [DOI:1006/jfca.2000.0948]
Irwin, R. W., Yao, J., To, J., Hamilton, R. T., Cadenas, E., & Brinton, R. D. (2012). Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function. Journal of Neuroendocrinology, 24(1), 236–248. [PMID] [DOI:1111/j.1365-2826.2011.02251.x]
Isaac, A. V., Kumari, S., Nair, R., Urs, D. R., Salian, S. R., & Kalthur, G., et al. (2017). Supplementing zinc oxide nanoparticles to cryopreservation medium minimizes the freeze-thaw-induced damage to spermatozoa. Biochemical and Biophysical Research Communications, 494(3-4), 656–662. [DOI:1016/j.bbrc.2017.10.112] [PMID]
Jang, Y. J., Son, H. J., Ahn, J., Jung, C. H., & Ha, T. (2016). Coumestrol modulates Akt and Wnt/β-catenin signaling during the attenuation of adipogenesis. Food & Function, 7(12), 4984–4991. [DOI:10.1039/C6FO01127F] [PMID]
Jumintono, J., Alkubaisy, S., Yánez Silva, D., Singh, K., Turki Jalil, A., & Mutia Syarifah, S., et al. (2021). Effect of cystamine on sperm and antioxidant parameters of ram semen stored at 4 C for 50 hours. Archives of Razi Institute, 76(4), 1115–1123. [PMID]
Kanno, S., Hirano, S., & Kayama, F. (2004). Effects of the phytoestrogen coumestrol on RANK-ligand-induced differentiation of osteoclasts. Toxicology, 203(1-3), 211-220. [DOI:1016/j.tox.2004.06.015] [PMID]
Koirala, P., Seong, S. H., Jung, H. A., & Choi, J. S. (2018). Comparative evaluation of the antioxidant and anti-alzheimer’s disease potential of coumestrol and puerarol isolated from pueraria lobata using molecular modeling studies. Molecules (Basel, Switzerland), 23(4), 785. [DOI:3390/molecules23040785] [PMID]
Koracevic, D., Koracevic, G., Djordjevic, V., Andrejevic, S., & Cosic, V. (2001). Method for the measurement of antioxidant activity in human fluids. Journal of Clinical Pathology, 54(5), 356–361. [DOI:1136/jcp.54.5.356] [PMID]
Kuiper, G. G., Carlsson, B., Grandien, K., Enmark, E., Häggblad, J., & Nilsson, S., et al. (1997). Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology, 138(3), 863–870. [DOI:1210/endo.138.3.4979] [PMID]
Kumar, R., Jagan Mohanarao, G., Arvind, & Atreja, S. K. (2011). Freeze-thaw induced genotoxicity in buffalo (Bubalus bubalis) spermatozoa in relation to total antioxidant status. Molecular Biology Reports, 38(3), 1499–1506. [DOI:1007/s11033-010-0257-1] [PMID]
Kumar, S., Millar, J. D., & Watson, P. F. (2003). The effect of cooling rate on the survival of cryopreserved bull, ram, and boar spermatozoa: A comparison of two controlled-rate cooling machines. Cryobiology, 46(3), 246–253. [DOI:1016/s0011-2240(03)00040-3] [PMID]
Mannowetz, N., Kartarius, S., Wennemuth, G., & Montenarh, M. (2010). Protein kinase CK2 and new binding partners during spermatogenesis. Cellular and Molecular Life Sciences: CMLS, 67(22), 3905–3913. [DOI:1007/s00018-010-0412-9] [PMID]
Martínez-Pastor, F., Aisen, E., Fernández-Santos, M. R., Esteso, M. C., Maroto-Morales, A., & García-Alvarez, O., et al. (2009). Reactive oxygen species generators affect quality parameters and apoptosis markers differently in red deer spermatozoa. Reproduction (Cambridge, England), 137(2), 225–235. [DOI:10.1530/REP-08-0357] [PMID]
Mesbah, M., Forouzanfar, M., & Eghbalsaied, S. (2022). Supplementation of estradiol into semen extender improved goat sperm cryopreservation. Biopreservation and biobanking, 20(1), 59–66. [DOI:1089/bio.2020.0169] [PMID]
Mitchell, J. H., Cawood, E., KInniburgh, D., Provan, A., Collins, A. R., & Irvine, D. S. (2001). Effect of a phytoestrogen food supplement on reproductive health in normal males. Clinical Science (London, England: 1979), 100(6), 613–618. [PMID]
Mitchell, J. H., Gardner, P. T., McPhail, D. B., Morrice, P. C., Collins, A. R., & Duthie, G. G. (1998). Antioxidant efficacy of phytoestrogens in chemical and biological model systems. Archives of Biochemistry and Biophysics, 360(1), 142–148. [DOI:1006/abbi.1998.0951] [PMID]
Momeni, H. R., Abnosi, M. H., & Eskandari, N. (2020). Quantitative evaluation of human sperm viability using MTT assay: A laboratory study. International Journal of Reproductive Biomedicine, 18(11), 983–988. [DOI:18502/ijrm.v13i11.7966] [PMID]
Mondal, S., & Rahaman, S. (2020). Flavonoids: A vital resource in healthcare and medicine. Pharmacy & Pharmacology International Journal, 8(2), 91-104. [DOI:10.15406/ppij.2020.08.00285]
Moreira, A. C., Silva, A. M., Branco, A. F., Baldeiras, I., Pereira, G. C., & Seiça, R., et al. (2017). Phytoestrogen coumestrol improves mitochondrial activity and decreases oxidative stress in the brain of ovariectomized Wistar-Han rats. Journal of Functional Foods, 34, 329-339. [DOI:1016/j.jff.2017.05.002]
Mostek, A., Dietrich, M. A., Słowińska, M., & Ciereszko, A. (2017). Cryopreservation of bull semen is associated with carbonylation of sperm proteins. Theriogenology, 92, 95–102.[DOI:1016/j.theriogenology.2017.01.011] [PMID]
Noegroho, B. S., Siregar, S., & Tampubolon, K. A. G. (2022). Antioxidant supplementation on sperm DNA fragmentation and sperm parameters: A systematic review and meta-analysis. Turkish Journal of Urology, 48(5), 375–384. [DOI:5152/tud.2022.22058] [PMID]
Ohkawa, H., Ohishi, N., & Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95(2), 351–358. [DOI:1016/0003-2697(79)90738-3] [PMID]
Park, G., Baek, S., Kim, J. E., Lim, T. G., Lee, C. C., & Yang, H., et al. (2015). Flt3 is a target of coumestrol in protecting against UVB-induced skin photoaging. Biochemical Pharmacology, 98(3), 473–483. [DOI:1016/j.bcp.2015.08.104] [PMID]
Pool, K. R., Kent, T. C., & Blache, D. (2021). Oestrogenic metabolite equol negatively impacts the functionality of ram spermatozoa in vitro. Theriogenology, 172, 216–222. [DOI:1016/j.theriogenology.2021.07.005] [PMID]
Psarra, A. M. G., & Sekeris, C. E. (2008). Steroid and thyroid hormone receptors in mitochondria. IUBMB Life, 60(4), 210–223.[DOI:1002/iub.37] [PMID]
Reddy, V. S., Yadav, B., Yadav, C. L., Anand, M., Swain, D. K., & Kumar, D., et al. (2018). Effect of sericin supplementation on heat shock protein 70 (HSP70) expression, redox status and post thaw semen quality in goat. Cryobiology, 84, 33–39. [DOI:1016/j.cryobiol.2018.08.005] [PMID]
Sarıözkan, S., Bucak, M. N., Tuncer, P. B., Büyükleblebici, S., & Cantürk, F. (2014). Influence of various antioxidants added to TCM-199 on post-thaw bovine sperm parameters, DNA integrity and fertilizing ability. Cryobiology, 68(1), 129–133. [DOI:1016/j.cryobiol.2014.01.007] [PMID]
Seo, D. B., Jeong, H. W., Lee, S. J., & Lee, S. J. (2014). Coumestrol induces mitochondrial biogenesis by activating Sirt1 in cultured skeletal muscle cells. Journal of Agricultural and Food Chemistry, 62(19), 4298–4305. [DOI:1021/jf404882w] [PMID]
Sikka, S. C. (2001). Relative impact of oxidative stress on male reproductive function. Current Medicinal Chemistry, 8(7), 851–862. [DOI:2174/0929867013373039] [PMID]
Tvrdá, E., Kováčik, A., Tušimová, E., Massányi, P., & Lukáč, N. (2015). Resveratrol offers protection to oxidative stress induced by ferrous ascorbate in bovine spermatozoa. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 50(14), 1440–1451. [DOI:1080/10934529.2015.1071153] [PMID]
Varıslı, O., Erat, S., Bozkaya, F., Aydilek, N., & Taşkın, A., (2021). Impacts of specific cryoprotectants on sperm freezing and relationships between cryodamage and oxidation stress parameters in awassi ram sperm. Cryo Letters, 42(2), 87–95. [PMID]
Vozaf, J., Svoradová, A., Baláži, A., Vašíček, J., Olexiková, L., & Dujíčková, L., et al. (2022). The cryopreserved sperm traits of various ram breeds: Towards biodiversity conservation. Animals, 12(10), 1311. [DOI:3390/ani12101311] [PMID]
Wang, S., Wang, W., Xu, Y., Tang, M., Fang, J., & Sun, H., et al. (2014). Proteomic characteristics of human sperm cryopreservation. Proteomics, 14(2-3), 298–310. [DOI:1002/pmic.201300225] [PMID]
Westfalewicz, B., Dietrich, M. A., & Ciereszko, A. (2015). Impact of cryopreservation on bull (Bos taurus) semen proteome. Journal of Animal Science, 93(11), 5240–5253. [DOI:2527/jas.2015-9237] [PMID]
Xi, G. L., & Liu, Z. Q. (2014). Coumestan inhibits radical-induced oxidation of DNA: Is hydroxyl a necessary functional group? Journal of Agricultural and Food Chemistry, 62(24), 5636–5642. [DOI:1021/jf500013v] [PMID]
Yadav, A., Singh, K. P., Singh, M. K., Saini, N., Palta, P., & Manik, R. S., et al. (2013). Effect of physiologically relevant heat shock on development, apoptosis and expression of some genes in buffalo (Bubalus bubalis) embryos produced in vitro. Reproduction in Domestic Animals = Zuchthygiene, 48(5), 858–865. [DOI:1111/rda.12175] [PMID]
You, J. S., Cho, I. A., Kang, K. R., Oh, J. S., Yu, S. J., & Lee, G. J., et al. (2017). Coumestrol counteracts interleukin-1β-induced catabolic effects by suppressing inflammation in primary rat chondrocytes. Inflammation, 40(1), 79–91. [DOI:1007/s10753-016-0455-7] [PMID]
Zafar, A., Singh, S., & Naseem, I. (2017). Cytotoxic activity of soy phytoestrogen coumestrol against human breast cancer MCF-7ácells: Insights into the molecular mechanism. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 99, 149–161. [DOI:1016/j.fct.2016.11.034] [PMID]
Zsarnovszky, A., & Belcher, S. M. (2001). Identification of a developmental gradient of estrogen receptor expression and cellular localization in the developing and adult female rat primary somatosensory cortex. Developmental Brain Research, 129(1), 39–46. [DOI:1016/s0165-3806(01)00180-8] [PMID] | ||
آمار تعداد مشاهده مقاله: 200 تعداد دریافت فایل اصل مقاله: 362 |