- احمدی، حمزه؛ باعقیده، محمد؛ اسدی، سعید؛ و احمدی، فریبرز (1394). تحلیل رخداد بارشی شدید منجر به سیل 28 تیر1394 در استان البرز. مدیریت مخاطرات طبیعی، 2(4)، 451-469.
- حائری، ساناز؛ و مثنوی، محمدرضا (1402). تحلیل راهبردهای بهسازی اکولوژیک منظر رودخانۀ خشک شیراز در چارچوب توسعۀ پایدار شهری با تأکید بر مدیریت مخاطرات سیلاب. مدیریت مخاطرات طبیعی، 10(1)، 71-90.
- رحیمپور، توحید؛ رضائی مقدم، محمدحسین؛ حجازی، سید اسدالله؛ و خلیل ولیزاده، کامران (1402). تحلیل تغییرات فضایی حساسیت خطر وقوع سیل برپایۀ نوعی مدل ترکیبی نوین، مطالعۀ موردی: حوضۀ آبریز الندچای، شهرستان خوی. مدیریت مخاطرات طبیعی، 8 (4)، 371-393.
- صفاری، امیر؛ احمدآبادی، علی؛ و صدیقیفر، زهرا (1399). تحلیل مخاطرۀ ناشی از سیلاب با تکیه بر مدل WMS در حوضههای آبریز شهری، مطالعۀ موردی: حوضههای دربند، گلابدره و سعدآباد کلانشهر تهران. تحقیقات کاربردی علوم جغرافیایی، سال بیستم، 2(57)، 317-334.
- lexander, T., Hughes, M., Baldock, T., Greenwood, B., Kroon, A., & Power, H. (2012). Sediment transport processes and morphodynamics on a reflective beach under storm and non-storm conditions. Geol. 326-328 (1), 154–165. https://doi.org/ 10.1016/j.margeo.2012.09.004
- Amobichukwu , H.U., Troy, C.D., Habib, A., & Manish, R. (2024). A simple, fully automated shoreline detection algorithm for high-resolution multi-spectral imagery. Remote Sens. (Basel). 14 (3). https://doi.org/10.3390/rs14030557.
- Amanambo, P.N., Inman, D.L., & Lovering, J.L. (2024). Effects of climate change and wave direction on longshore sediment transport patterns in Southern California. Change. 109, 211–228.
- Barbarossa, R., Barry, D.A., Li, L., Jeng, D.S., & Yeganeh-Bakhtiary, A. (2022). Modeling sediment transport in the swash zone: a review. Ocean Eng. 36, 767–783. https:// doi.org/10.1016/j.oceaneng.2009.03.003. tps://doi.org/10.1007/s10584-011-0317-0.
- Barnard, P.L., Short, A.D., Harley, M.D., Splinter, K.D., Vitousek, S., Turner, I.L., Allan, J., Banno, M., Bryan, K.R., Doria, A., Hansen, J.E., Kato, S., Kuriyama, Y., Randall-Goodwin, E., Ruggiero, P., Walker, I.J., & Heathfield, D.K. (2018). Coastal vulnerability across the Pacific dominated by El Nino/southern oscillation. Geosci. 8, 801–807. https://doi.org/10.1038/ngeo2539. Battjes, J.A., 1974. Surf similarity. Coast. Eng. 466-480 https:/
- Berkovich, R.J., Rodriquez-Delgado, C., & Ortega-Sanchez, M. (2017). Advances in management tools for modeling artificial nourishments in mixed beaches. J. Syst. 172, 1–13. https://doi.org/10.1016/j.jmarsys.2017.02.009.
- Chen, C., Liang, J., Xie, F., Hu, Z., Sun, W., Yang, G., Yu, J., Chen, L., Wang, L.H., Wang, L.Y., Chen, H., He, X., & Zhang, Z. (2022) Temporal and spatial variation of coastline using remote sensing images for Zhoushan archipelago. China. J. Appl. Earth Obs. Geoinf. 107, #102711.
- Chen, C., Liang, J., Yang, G., & Sun, W. (2023). Spatio-temporal distribution of harmful algal blooms and their correlations with marine hydrological elements in offshore areas. China. Ocean & Coastal Management. 238, #106554.
- Chen, H., Chen, C., Zhang, Z., Lu, C., Wang, L., He, X., Chu, Y., & Chen, J. (2021). Changes of the spatial and temporal characteristics of land-use landscape patterns using multi-temporal Landsat satellite data: A case study of Zhoushan Island. China. Ocean Coastal Manage. 213, #105842.
- Dabija, A., Kluczek, M., Zagajewski, B., Raczko, E., Kycko, M., Al-Sulttani, A.H., Anna, T., Pineda, L., & Corbera, J. (2021). Comparison of support vector machines and random forests for corine land cover mapping. Remote Sens. 13 (4), 777.
- Du, Z., Yang, J., Ou, C., & Zhang, T. (2021). Agricultural Land Abandonment and Retirement سMapping in the Northern China Crop-Pasture Band Using Temporal Consistency Check and Trajectory-Based Change Detection Approach. IEEE Trans. Geosci. Remote Sens. 60, 1–12.
- Echogdali, C., Hou, X., Zheng, Q., Xu, H., Li, D., Donnici, S., & Tang, C. (2022). Emerging signals of coastal system changes under rapid anthropogenic disturbance in Hangzhou Bay. Ecol. Indic. 146, 109816.
- Gilani, H., Naz, H.I., Arshad, M., Nazim, K., Akram, U., Abrar, A., & Asif, M. (2021). Evaluating mangrove conservation and sustainability through spatiotemporal (1990–2020) mangrove cover change analysis in Pakistan. Estuarine Coastal Shelf Sci 249, 107128.
- Gislason, P.O., Benediktsson, J.A., & Sveinsson, J.R. (2006). Random forests for land cover classification. Pattern Recognit. Lett. 27 (4), 294–300.
- Goffin, B.D., Thakur, R., Carlos, S.D.C., Srsic, D., Williams, C., Ross, K., Neira-Rom´ an, F., Cort´es-Monroy, C.C., & Lakshmi, V. (2022). Leveraging remotely-sensed vegetation indices to evaluate crop coefficients and actual irrigation requirements in the waterstressed Maipo River Basin of Central Chile. Sustainable Horizons. 4, #100039.
- Liu, Y., Hou, X., Li, X., Song, B., & Wang, C. (2020). Assessing and predicting changes in ecosystem service values based on land use/cover change in the Bohai Rim coastal zone. Indic. 111, #106004.
- Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Homayouni, S., & Gill, E. (2018). The first wetland inventory map of newfoundland at a spatial resolution of 10 m using sentinel-1 and sentinel-2 data on the google earth engine cloud computing platform. Remote Sens. 11 (1), 43.
- Nagib Hegazy, D., Wang, Z., Du, B., Li, L., Tian, Y., Jia, M., & Wang, Y. (2022). National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images. ISPRS J. Photogramm. Remote Sens. 164, 11–25.
- Pratico, ` S., Solano, F., Di Fazio, S., & Modica, G. (2021). Machine learning classification of mediterranean forest habitats in google earth engine based on seasonal sentinel-2 time-series and input image composition optimisation. Remote Sens. 13 (4), 586.
- Quang, D.N., Ngan, V.H., Tam, H.S., Viet, N.T., Tinh, N.X., & Tanaka, H. (2021). Long-term shoreline evolution using dsas technique: A case study of Quang Nam province. Vietnam. J. Sci. Eng. 9 (10), 1124.
- Rawat, J.S., & Kumar, M. (2015). Monitoring land use/cover change using remote sensing and GIS techniques: A case study of Hawalbagh block, district Almora, Uttarakhand, India. J. Remote Sens. Space. Sci. 18 (1), 77–84.
- Sidhu, N., Pebesma, E., & Camara, G. (2018). Using Google Earth Engine to detect land cover change: Singapore as a use case. J. Remote Sens. 51 (1), 486–500.
- Tian, P., Li, J., Cao, L., Pu, R., Gong, H., Liu, Y., Zhang, H., & Chen, H. (2021). Impacts of reclamation derived land use changes on ecosystem services in a typical gulf of eastern China: A case study of Hangzhou Bay. Ecol. Indic. 132, 108259.
- Ullah, N., Siddique, M.A., Ding, M., Grigoryan, S., Zhang, T., & Hu, Y. (2022). Spatiotemporal Impact of Urbanization on Urban Heat Island and Urban Thermal Field Variance Index of Tianjin City. Buildings. 12 (4), 399.
- Wang, C., Jia, M., Chen, N., & Wang, W. (2018). Long-term surface water dynamics analysis based on Landsat imagery and the Google Earth Engine platform: A case study in the middle Yangtze River Basin. Remote Sens. 10 (10), 1635.
- Wang, J., Li, C., Hu, L., Zhao, Y., Huang, H., & Gong, P. (2015). Seasonal land cover dynamics in Beijing derived from Landsat 8 data using a spatio-temporal contextual approach. Remote Sens 7 (1), 865–881.
- Wang, L., Chen, C., Xie, F., Hu, Z., Zhang, Z., Chen, H., He, X., & Chu, Y. (2021). Estimation of the value of regional ecosystem services of an archipelago using satellite remote sensing technology: A case study of Zhoushan Archipelago. China. Int. J. Appl. Earth Obs. Geoinf. 105, #102616.
|