تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,092,514 |
تعداد دریافت فایل اصل مقاله | 97,196,493 |
شناسایی نمایههای طیفی نامتقارن در ناحیهگذار خورشید | ||
فیزیک زمین و فضا | ||
مقاله 10، دوره 50، شماره 3، مهر 1403، صفحه 731-741 اصل مقاله (1.53 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2024.368006.1007576 | ||
نویسندگان | ||
راضیه حسینی* ؛ حسین صفری | ||
گروه فیزیک، دانشکده علوم، دانشگاه زنجان، زنجان، ایران. | ||
چکیده | ||
شناخت نقش فرایندهای مختلف برای درک گرمایش پلاسما تا میلیونها درجه در ناحیه گذار و تاج خورشید بسیار مهم است. بر این اساس ما به بررسی نمایههای طیفی نامتقارن در ناحیهگذار خورشید میپردازیم. روش شناسایی این عدمتقارنها بر اساس برازش الگوهای تک-دو گاوسی است. دادههای طیفی مورد استفاده در این تحقیق توسط طیفنگار تصویربرداری ناحیه رابط (آیریس) در ۱۴ اکتبر ۲۰۱۵ در طولموج ۱۳۹۴ آنگستروم Si IV ثبت شده است. با بررسی بیش از ۱۰۳۰۰۰ طیف ناحیهگذار، با برآورد سه شرط تجربی، ۱۵۹۸ نمایه نامتقارن با عدمتقارن یک سمتی یا دوسمتی یافت شد. در این پژوهش سه شرط تجربی برآورد عدمتقارن در طیف معرفی میشود: (۱) مقدار معناداری برازش الگوی تکگاوسی بیشتر از یک، (۲) حداقل شدت دو مؤلفه (قله اول و دوم در نمایه طیف) بیشتر از DN ۲۰ (تعداد فوتونهای رسیده در قله نمایه طیف) و (۳) فاصله مراکز دو مؤلفه طیف در مقیاس سرعت بیشتر از ۲۰ کیلومتر بر ثانیه. بیشترین تعداد نمایههای نامتقارن مربوط به نمایهای با یک مؤلفه در سمت آبی آن است. کمترین تعداد را نمایههایی ناسازگار با هر دو الگوی برازش تک و دو گاوسی (نمایههایی با دو بال) در اختیار دارند. ما نشان دادیم که موقعیت نمایههای نامتقارن روی نواحی با چگالی بالای شار مغناطیسی در اچامآی (ابزار مغناطیس نگار خورشیدی بر روی رصدخانه دینامیک خورشیدی اس دیاو است) و همچنین نواحی شبه شبکهای روشن در مقیاس بزرگ در تصویر رستر ۱۳۳۰ آنگستروم متمرکز است، که نشاندهنده ساز و کارهای مغناطیسی در بروز عدمتقارن طیف ناحیه گذار است. | ||
کلیدواژهها | ||
خورشید؛ ناحیهگذار؛ نمایههای طیفی نامتقارن | ||
مراجع | ||
Boerner, P., Edwards, C., Lemen, J., Rausch, A., Schrijver, C., Shine, R., & Shing, L. (2012). Initial calibration of the atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Physics, 275. 41. Brooks, D. H., & Warren, H. P. (2009). Flows and motions in moss in the core of a flaring active region: evidence for steady heating. Astrophysical Journal , 703, L10. Chen, Y., Tian, H., Huang, Z., Peter, H., & Samanta, T. (2019). Investigating the transition region explosive events and their relationship to network jets. Astrophysical Journal, 873, 79. Cranmer, S. R. (2009). Coronal Holes. Solar Physics, 6, 3. Culhane, J. L., Korendyke, C. M., Watanabe, T., & Doschek, G. A. (2000). Extreme-ultraviolet imaging spectrometer designed for the Japanese Solar-B satellite. Instrumentation for UV/EUV Astronomy and Solar Missions, 4139, 294. De Pontieu, B., McIntosh Scott W., Hansteen Viggo H., & Schrijver Carolus J. (2009). Observing the roots of solar coronal heating in the chromosphere. Astrophysical Journal, 701, L1. De Pontieu, B., Title, A. M., Lemen, J. R., Kushner, G. D., Akin, D. J., Allard, B., Berger, T., & Boerner, P. (2014). The interface region imaging spectrograph (IRIS). Solar Physics, 289, 2733. Del Zanna, G. (2008). Flows in active region loops observed by Hinode EIS. Astronomy & Astrophysics, 481, L49. Garton, T. M., Gallagher, P. T., & Murray, S. A. (2018). Automated coronal hole identification via multi-thermal intensity segmentation. Journal of Space Weather and Space Climate, 8, A02. Hara, H., Watanabe, T., Harra, L. K., Culhane, J. L., Young, P. R., Mariska, J. T., & Doschek, G. A. (2008). Coronal plasma motions near footpoints of active region loops revealed from spectroscopic observations with Hinode EIS. Astrophysical Journal Letters, 678, L67. Harra, L., Sakao, T., Mandrini, C. H., Hara, H., Imada, S., Young, P. R., Driel-Gesztelyi, L., & Baker, D. (2008). Outflows at the edges of active regions: contribution to solar wind formation?. Astrophysical Journal Letters. 676, L147. Hassler, D. M., Rottman, G. J., Orrall, F. Q. (1991). Systematic radial flows in the chromosphere, transition region, and corona of the quiet Sun. Astrophysical Journal, 372, 710. Hosseini, R., Kayshap, P., Alipour, N., Safari, H., (2024), Asymmetry of the spectral lines of the coronal hole and quiet Sun in the transition region, Monthly Notices of the Royal Astronomical Society, doi: 10.1093/mnras/stae356. Insley, J. E., Moore, V., Harrison, R. A., (1995). The differential rotation of the corona as indicated by coronal holes. Solar Physics, 160, 1. Kayshap, P., Tripathi, D., Solanki, S. K., & Peter, H. (2018). Quiet-Sun and coronal hole in Mg II k line as observed by IRIS. Astrophysical Journal, 864, 21. Kjeldseth, Moe O., & Nicolas, K. R. (1977). Emission measures, electron densities, and nonthermal velocities from optically thin UV lines near a quiet solar limb. Astrophysical Journal, 211, 579. Klimchuk, J. A. (2006). On solving the coronal heating problem. Solar Physics, 234, 41. Ko, Y. K., Doschek, G. A., Warren, H. P., & Young, P. R. (2009). Hot plasma in nonflaring active regions observed by the extreme-ultraviolet imaging spectrometer on Hinode. Astrophysical Journal. 679, 1956. Krieger, A. S., Timothy, A. F., Roelof, E. C., (1973). A coronal hole and its identification as the source of a high velocity solar wind stream. Solar Physics, 29, 505. Lemen, J. R., Title, A. M., Akin, D. J., Boerner, P. F., Chou, C., Drake, J. F., & Duncan, D. W. (2012). The atmospheric imaging assembly (AIA) on the solar dynamics observatory (SDO). Solar Physics, 275, 17. Linker, J. A., Heinemann, S. G, Temmer, M., Owens, Mathew J, C., Ronald, M., & Arge, C. N. (2021). Coronal hole detection and open magnetic flux. Astrophysical Journal, 918, 21. Martínez-Sykora, J., De Pontieu, B., Hansteen, V., & McIntosh, S. W. (2011). What do spectral line profile asymmetries tell us about the solar atmosphere?. Astrophysical Journal, 732, 84. McIntosh, S. W., & De Pontieu, B. (2009a). Observing episodic coronal heating events rooted in chromospheric activity. Astrophysical Journal, 706, L80. McIntosh, S. W., & De Pontieu, B. (2009b). High-speed transition region and coronal upflows in the quiet Sun. Astrophysical Journal, 707, 542. Mishra, S. K., Sangal, K., Kayshap, P., Jelnek, P., Srivastava, A. K., & Rajaguru, S. P. (2023). Origin of quasi-periodic pulsation at the base of a Kink-unstable jet. Astrophysical Journal, 945, 113. Patsourakos, S., & Klimchuk, J. A. (2006). Nonthermal spectral line broadening and the nanoflare model. Astrophysical Journal, 647, 1452. Parker E. N. (1972). Topological dissipation and the small-scale fields in turbulent gases. Astrophysical Journal, 174, 499. Parnell, C. E., & De Moortel, I. (2012). A contemporary view of coronal heating. Philosophical Transactions of the Royal Society of London Series A, 370, 3217. Peter, H., & Judge, P. G. (1999). On the Doppler shifts of solar ultraviolet emission lines. Astrophysical Journal, 522, 1148. Peter, H., (2000). Multi-component structure of solar and stellar transition regions. Astronomy & Astrophysics, 360,761. Peter, H. (2001). On the nature of the transition region from the chromosphere to the corona of the Sun. Astronomy & Astrophysics, 374, 1108. Peter, H., Gudiksen, B. V., & Nordlund, A. (2006). Forward modeling of the corona of the Sun and solar-like stars: from a three-dimensional magnetohydrodynamic model to synthetic extreme-ultraviolet spectra. Astrophysical Journal, 638, 1086. Peter, H. (2010). Asymmetries of solar coronal extreme ultraviolet emission lines. Astronomy & Astrophysics, 521, A51. Sabri, S., Poedts, S., & Ebadi, H. (2019). Plasma heating by magnetoacoustic wave propagation in the vicinity of a 2.5D magnetic null-point. Astronomy & Astrophysics, 623, A81. Sabri, S., Ebadi, H., & Poedts, S. (2020). Plasmoids and Resulting Blobs due to the Interaction of Magnetoacoustic Waves with a 2.5D Magnetic Null Point. Astrophysical Journal, 902,11. Sabri, S., Ebadi, H., & Poedts, S. (2022). Propagation of the Alfven Wave and Induced Perturbations in the Vicinity of a 3D Proper Magnetic Null Point. Astrophysical Journal, 924, 126. Sabri, S., Poedts, S., Ebadi, H. (2023). How Nonlinearity Changes Different Parameters in the Solar Corona. Astrophysical Journal, 944, 72. Sakao, T., Kano, R., Narukage, N., Kotoku, J., Bando, T., DeLuca, E. E, & Lundquist, L. L. (2007). Continuous plasma outflows from the edge of a solar active region as a possible source of solar wind. Science, 318, 1585. Scherrer, P. H., Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J. T., & Liu, Y. (2012). The helioseismic and magnetic imager (HMI) investigation for the solar dynamics observatory (SDO). Solar Physics, 275, 207. Stucki, K., Solanki, S. K., Pike, C. D., Schühle, U., Rüedi, I., Pauluhn, A., Brković, A. (2002). Properties of ultraviolet lines observed with the Coronal Diagnostic Spectrometer (CDS/SOHO) in coronal holes and the quiet Sun. Astronomy & Astrophysics, 381, 653. Upendran, V., & Tripathi, D. (2022). On the impulsive heating of quiet solar corona. Astrophysical Journal, 926, 138. Waldmeier, M. (1975). The coronal hole at the 7 march 1970 solar eclipse. Solar Physics, 40, 351. Wiegelmann, T., & Solanki, S. K. (2004). Why are coronal holes indistinguishable from the quiet Sun in transition region radiation?. SOHO 15 Coronal Heating, 575, 35. Wilhelm, K., Curdt, W., Marsch, E., Schuhle, U., Lemaire P., Gabriel, A., & Vial, J. C. (1995). SUMER - solar ultraviolet measurements of emitted radiation. Solar Physics, 162, 189. Wilhelm, K., (2000), Solar spicules and macrospicules observed by SUMER. Astronomy & Astrophysics, 360, 351.
| ||
آمار تعداد مشاهده مقاله: 384 تعداد دریافت فایل اصل مقاله: 322 |