- Ahmad, W. N. K. W., Rezaei, J., Sadaghiani, S., & Tavasszy, L. A. (2017). Evaluation of the external forces affecting the sustainability of oil and gas supply chain using Best Worst Method. Journal of Cleaner Production, 153, 242-252.
- Ahmed, A. A. (2009). Using generic and pesticide DRASTIC GIS-based models for vulnerability assessment of the Quaternary aquifer at Sohag, Egypt. Hydrogeology Journal, 17(5), 1203-1217.
- Aller, L., Lehr, J., & Petty, R. (1987). DRASTIC: a standardized system to evaluate ground water pollution potential using hydrogeologic settings. National water well Association Worthington, Ohio 43085. Truman Bennett. Bennett and Williams. Columbus, Ohio, 43229.
- Bradley, A. P. (1997). The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern recognition, 30(7), 1145-1159.
- Brindha, K., & Elango, L. (2015). Cross comparison of five popular groundwater pollution vulnerability index approaches. Journal of hydrology, 524, 597-613.
- Bordbar, M., Neshat, A., Javadi, S., & Shahdany, S. M. H. (2021). A hybrid approach based on statistical method and meta-heuristic optimization algorithm for coastal aquifer vulnerability assessment. Environmental Modeling & Assessment, 26, 325-338.
- Busico, G., Kazakis, N., Cuoco, E., Colombani, N., Tedesco, D., Voudouris, K., & Mastrocicco, M. (2020). A novel hybrid method of specific vulnerability to anthropogenic pollution using multivariate statistical and regression analyses. Water Research, 171, 115386.
- Chen, W., Pourghasemi, H. R., Kornejady, A., & Zhang, N. (2017). Landslide spatial modeling: Introducing new ensembles of ANN, MaxEnt, and SVM machine learning techniques. Geoderma, 305, 314-327.
- Chukwuma, E. C., Okonkwo, C. C., Afolabi, O. O. D., Pham, Q. B., Anizoba, D. C., & Okpala, C. D. (2023). Groundwater vulnerability to pollution assessment: an application of geospatial techniques and integrated IRN-DEMATEL-ANP decision model. Environmental Science and Pollution Research, 30(17), 49856-49874.
- Expósito, J. L., Esteller, M. V., Paredes, J., Rico, C., & Franco, R. (2010). Groundwater protection using vulnerability maps and wellhead protection area (WHPA): a case study in Mexico. Water resources management, 24, 4219-4236.
- Gorelick, S. M., & Zheng, C. (2015). Global change and the groundwater management challenge. Water Resources Research, 51(5), 3031-3051.
- Hao, J., Zhang, Y., Jia, Y., Wang, H., Niu, C., Gan, Y., & Gong, Y. (2017). Assessing groundwater vulnerability and its inconsistency with groundwater quality, based on a modified DRASTIC model: a case study in Chaoyang District of Beijing City. Arabian Journal of Geosciences, 10, 1-16.
- Hashemkhani Zolfani, S., Yazdani, M., & Zavadskas, E. K. (2018). An extended stepwise weight assessment ratio analysis (SWARA) method for improving criteria prioritization process. Soft Computing, 22, 7399-7405.
- Iqbal, J., Gorai, A., Katpatal, Y., & Pathak, G. (2015). Development of GIS-based fuzzy pattern recognition model (modified DRASTIC model) for groundwater vulnerability to pollution assessment. International journal of environmental science and technology, 12, 3161-3174.
- Islam, A. R. M. T., Talukdar, S., Mahato, S., Kundu, S., Eibek, K. U., Pham, Q. B., ..., Linh, N. T. T. (2021). Flood susceptibility modelling using advanced ensemble machine learning models. Geoscience Frontiers, 12(3), 101075.
- Jenks, G. F. (1977). Optimal data classification for choropleth maps. Department of Geographiy, University of Kansas Occasional Paper.
- Jhariya, D. (2019). Assessment of groundwater pollution vulnerability using GIS-based DRASTIC model and its validation using nitrate concentration in Tandula Watershed, Chhattisgarh. Journal of the Geological Society of India, 93, 567-573.
- Kumar, P., Bansod, B. K., Debnath, S. , Thakur, P. K., & Ghanshyam, C. (2015). Index-based groundwater vulnerability mapping models using hydrogeological settings: a critical evaluation. Environmental Impact Assessment Review, 51, 38-49.
- Li, P., Karunanidhi, D., Subramani, T., & Srinivasamoorthy, K. (2021). Sources and consequences of groundwater contamination. Archives of environmental contamination and toxicology, 80, 1-10.
- Liu, M., Xiao, C., & Liang, X. (2022). Assessment of groundwater vulnerability based on the modified DRASTIC model: a case study in Baicheng City, China. Environmental earth sciences, 81(8), 230.
- Manap, M. A., Nampak, H., Pradhan, B., Lee, S., Sulaiman, W. N. A., & Ramli, M. F. (2014). Application of probabilistic-based frequency ratio model in groundwater potential mapping using remote sensing data and GIS. Arabian Journal of Geosciences, 7, 711-724.
- Neshat, A., & Pradhan, B. (2015). An integrated DRASTIC model using frequency ratio and two new hybrid methods for groundwater vulnerability assessment. Natural Hazards, 76, 543-563.
- Neshat, A., Pradhan, B., Pirasteh, S., & Shafri, H. Z. M. (2014). Estimating groundwater vulnerability to pollution using a modified DRASTIC model in the Kerman agricultural area, Iran. Environmental earth sciences, 71, 3119-3131.
- Neshat, A., Pradhan, B., & Dadras, M. (2014). Groundwater vulnerability assessment using an improved DRASTIC method in GIS. Resources, Conservation and Recycling, 86, 74-86.
- Obuchowski, N. A., & Bullen, J. A. (2018). Receiver operating characteristic (ROC) curves: review of methods with applications in diagnostic medicine. Physics in Medicine & Biology, 63(7), 07TR01.
- Paryani, S., Neshat, A., & Pradhan, B. (2021). Spatial landslide susceptibility mapping using integrating an adaptive neuro-fuzzy inference system (ANFIS) with two multi-criteria decision-making approaches. Theoretical and Applied Climatology, 146(1), 489-509.
- Paryani, S., Neshat, A., Pourghasemi, H. R., Ntona, M. M., & Kazakis, N. (2022). A novel hybrid of support vector regression and metaheuristic algorithms for groundwater spring potential mapping. Science of The Total Environment, 807, 151055.
- Pouyan, S., Pourghasemi, H. R., Bordbar, M., Rahmanian, S., & Clague, J. J. (2021). A multi-hazard map-based flooding, gully erosion, forest fires, and earthquakes in Iran. Scientific Reports, 11(1), 14889.
- Pradhan, B., & Lee, S. (2010). Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling & Software, 25(6), 747-759.
- Rezaei, F., Safavi, H. R., & Ahmadi, A. (2013). Groundwater vulnerability assessment using fuzzy logic: a case study in the Zayandehrood aquifers, Iran. Environmental management, 51, 267-277.
- Shakeri, R., Alijani, F., & Nassery, H. R. (2023). Comparison of the DRASTIC+ L and modified VABHAT models in vulnerability assessment of Karaj aquifer, central Iran, using MCDM, SWARA, and BWM methods. Environmental earth sciences, 82(4), 97.
- Shrestha, A., & Luo, W. (2018). Assessment of groundwater nitrate pollution potential in Central Valley Aquifer using geodetector-based frequency ratio (GFR) and optimized-DRASTIC methods. ISPRS international journal of geo-information, 7(6), 211.
- Torkashvand, M., Neshat, A., Javadi, S., & Yousefi, H. (2021). DRASTIC framework improvement using stepwise weight assessment ratio analysis (SWARA) and combination of genetic algorithm and entropy. Environmental Science and Pollution Research, 28, 46704-46724.
- Torkashvand, M., Neshat, A., Javadi, S., Yousefi, H., & Berndtsson, R. (2023). Groundwater vulnerability to nitrate contamination from fertilizers using modified DRASTIC frameworks. Water, 15(17), 3134.
- Yu, C., Zhang, B., Yao, Y., Meng, F., & Zheng, C. (2012). A field demonstration of the entropy-weighted fuzzy DRASTIC method for groundwater vulnerability assessment. Hydrological Sciences Journal, 57(7), 1420-1432.
|