تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,116,619 |
تعداد دریافت فایل اصل مقاله | 97,221,317 |
بررسی کارایی مدل حداکثر آنتروپی در پتانسیلسنجی مناطق مستعد به خشکسالی هیدرولوژیک منابع آب زیرزمینی (مطالعه موردی: دشت جیرفت) | ||
اکوهیدرولوژی | ||
مقاله 7، دوره 11، شماره 1، فروردین 1403، صفحه 105-124 اصل مقاله (3.85 M) | ||
نوع مقاله: پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ije.2024.366730.1766 | ||
نویسندگان | ||
مینا اقتدارنژاد1؛ حسین ملکی نژاد* 2؛ الهام رفیعی ساردوئی3 | ||
1دانشگاه یزد-یزد-ایران | ||
2گروه مرتع و آبخیزداری، دانشکده منابع طبیعی، دانشگاه یزد | ||
3گروه مهندسی طبیعت، دانشکده مهندسی منابع طبیعی، دانشگاه جیرفت، جیرفت | ||
چکیده | ||
خشکسالی، یکی از بلایای طبیعی است که ممکن است در هر اقلیمی رخ دهد. در دهههای اخیر، کشور ایران بهطور پیاپی تحت تأثیر خشکسالیهای شدید و گسترده قرار داشته و آثار زیانباری بر بخشهای مختلف اقتصادی از جمله منابع آب کشور تحمیل کرده است. یکی از نیازهای رشد و توسعه هر کشور آب است. از طرفی با عنایت به نبود جریانات آب سطحی دائمی و یا حتی فصلی مهم در بسیاری از دشتهای کشور، یکی از مهمترین منابع برداشت آب، استفاده از ذخایر آب زیرزمینی است. بنابراین بررسی وضعیت این منابع و تعیین عوامل اثرگذار بر روی آنها از اهمیت شایانی برخوردار است. در این پژوهش سعی شده است مناطقی که در معرض خشکسالی شدید آب زیرزمینی قرار دارند شناسایی شوند و میزان تاثیر عوامل موثر بر خشکسالی آبهای زیرزمینی با استفاده از مدل حداکثر آنتروپی و با بهرهگیری از نرم افزار MaxEnt در حوضه آبخیز دشت جیرفت مشخص شود. برای اجرای مدل حداکثر آنتروپی از 70 درصد دادهها برای آموزش مدل و 30 درصد برای آزمون مدل استفاده شد. نتایج این مطالعه براساس آزمون جکنایف نشان داد که مهمترین فاکتورهای تاثیرگذار بر خشکسالی آبهای زیرزمینی، ارتفاع، فاصله از رودخانه و رطوبت سطح خاک میباشند و مدل بیشترین حساسیت را نسبت به این پارامترها نشان داد. همچنین نتایج نشان داد که مدل دقت قابل قبولی در شناسایی خشکسالی آب زیرزمینی دارد بهطوری که دقت مدل 76/0 برآورد گردید. | ||
کلیدواژهها | ||
آب زیرزمینی؛ خشکسالی؛ دشت جیرفت؛ مدل حداکثر آنتروپی | ||
مراجع | ||
]1[ Jha M.K, Chowdhury A, Chowdary V.M and Peiffer S. Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resource Management. 2006; 21(2):427-467. ]2[ Han J.Ch, Huang Y, Li Zh, Zhao Ch, Cheng G and Huang P. Groundwater level prediction using a SOM-aided stepwise cluster inference model. Journal of Environmental Management. 2016; 182:308-321. ]3[ Nourani V and Mousavi Sh. Spatiotemporal groundwater level modeling using hybridartificial intelligence-meshless method. Journal of Hydrology. 2016; 536:10-25. ]4[ Recep C. Temporal Changes in the Groundwater Level in the Upper Tigris Basin, Turkey, Determined by a GIS Technique. Journal of African Earth Sciences. 2015; 107:134-143. ]5[ Lijzen J.P, Otte P and Van Dreumel M. Towards sustainable management of groundwater: policy developments in The Netherlands. Sci. Total Environ.2014; (485-486):804-809. ]6[ Sun R, Jin M, Giordano M and Villholth K.G. Urban and rural groundwater use in Zhengzhou, China: challenges in joint management. Hydrogeol. J. 2009; 17(6):1495-1506. ]7[ Hua Sh, Liang J, Zeng G, Xu M, Zhang Ch, Yuan Y, et al. How to manage future groundwater resource of China under climate change and urbanization: An optimal stage investment design from modern portfolio theory. Water Research.2015; 85:31-37. ]8[ Samadi R., Behmanesh J and Rezaei H. Investigation of groundwater level changes trend (Case study: Urmia plain).
]9[ Choi M, Jacobs J.M, Anderson M.C, Bosch D.D. Evaluation of drought indices via remotely sensed data with hydrological variables. Journal of Hydrology. 2013; 476 : 265-273. ]10[ Alizadeh A. Principles of Applied Hydrology. 40th Reprint, 7th Edition, Astan Quds Razavi Publication. 2015; 941pp (Persian). ]11[ Bordi I. and Sutera A. Drought variability andits climatic implications. Global and PlanetaryChange. 2004; 40 ( 1, 2): 115- 127. ]12[ Dracup J.A., Lee K.S and Paulson E.G. on the definition of drought. Water Resources Research. 1980; 16(2): 297- 302. ]13[ Wilhite D.A. and Glantz M.H. Understanding the drought phenomenon: the role of definitions. Water Internationa. 1985; 10 (3):111-120. ]14[ Villholth K.G, Tottrup C, Stendel M, Maherry A. Integrated mapping ofgroundwater drought risk in the Southern African Development Community (SADC) region, Hydrogeology Journal, 21(4):863-885. ]15[ Peters E, Bier G, Van Lanen H.A.J and Torfs P.J.J.F. Drought Propagation and Spatial Distribution of Drought in a Groundwater Catchment. Hydrology Journal. 2006; 321(1-4):257-275. ]16[ Allard D, D’Or D, Froidevau R. An efficient maximum entropy approach for categorical variable prediction. Europ J Soil Sci. 2011; 62 (3): 381–393. ]17[ Rajabzadeh F, Ghiasi S, Zahmati A. Effectiveness of maximum entropy algorithm and geographic information system in assessing the sensitivity of shallow landslides. Water and Soil Resources Protection Quarterly. 2018; 8 (2): 57-74 (Persian). ]18[ Teimuri M, Asadi Nelivan A. Sensitivity zoning and prioritization of factors affecting the occurrence of landslides using the maximum entropy model (case study: Lorestan province). Hydrogeomorphology Journal. 2019; 6 (21): 155-179 (Persian). ]19[ Park N.W. Using maximum entropy modeling for landslide susceptibility mapping with multiple geoenvironmental data sets. Environ Earth Sci. 2015; 73: 937-949. ]20[ Kornejady A, Ownegh M, Bahremand A. Landslide susceptibility assessment using maximum entropy model with two different data sampling methods. Catena. 2017; 152: 144-162. ]21[ Kerekes A.H, Poszet S.L, Andrea G.Á.L. Landslide susceptibility assessment using the maximum entropy model in a sector of the Cluj–Napoca Municipality, Romania. Revista de Geomorfologie. 2018; 20 (1): 130-146. ]22[ Pandey V.K, Pourghasemi H.R, Sharma M.C. Landslide susceptibility mapping using maximum entropy and support vector machine models along the Highway Corridor, Garhwal Himalaya. Geocarto International. 2020; 35(2): 168-187. ]23[ Rahmati O, Pourghasemi H.R, Meless A.M. Application of GIS-Based Data Driven Random Forest and Maximum Entropy Models for Groundwater Potential Mapping: A case Study at Mehran Region, Iran. Catena. 2016; 137: 360-372. ]24[ Razandi Y, Farokhzadeh B, Yousefzadeh Chabok M, Teimurian T. Applying Maximum Entropy algorithm (MAXENT) in Ground water potential mapping Case study: Hamedan-Bahar Plain. Journal of Irrigation and Water Engineering. 2017; 8(29): 110-123 (Persian). ]25[ Zabihi M, Purghasemi H.R, Behzadfar M. Preparation of groundwater potential map using Shannon entropy models and random forest in Bojnourd plain. Ecohydrology. 2015; 2 (2): 221-232. ]26[ Oliyayi A, Parvian N, Khsravi O. Identifying the potential of groundwater resources in hard formations as a solution to manage the water crisis (Case study: Kalat Naderi watershed). Geography and Environmental Hazards. 2017; 24: 143-158 (Persian). ]27[ Castillo J.L, Martínez Cruz D. A, Ramos Leal J. A, Tuxpan Vargas J, Rodríguez Tapia, S. A & Marín Celestino A. E. Delineation of groundwater potential zones (GWPZs) in a semi-arid basin through remote sensing, GIS, and AHP approaches. Water. 2022; 14(13): 2138 (Persian). ]28[ Rahaman M. H, Sajjad H, Masroor M, Bhuyan N. & Rehman S. Delineating groundwater potential zones using geospatial techniques and fuzzy analytical hierarchy process (FAHP) ensemble in the data-scarce region: evidence from the lower Thoubal river watershed of Manipur, India. Arabian Journal of Geosciences.2022; 15(8): 677 (Persian). ]29[ Haghighi A, Nohtani M, Dahmardeh Ghaleno M.R. & Rafiei Sardooi E. Evaluating and detecting potential of groundwater resources using Fuzzy-AHP method and remote sensing data (Case study: Bam-Narmashir plain). Integrated Watershed Management. 2023; 3 (1): 16-37 (Persian). ]30[ Zakerinejad R, Maerker M. Prediction of Gully erosion susceptibilities using detailed terrain analysis and maximum entropy modeling: a case study in the Mazayejan Plain. Southwest Iran. Geografia Fisica e Dinamica Quaternaria. 2014; 37(1): 67-76. ]31[ Deo R.C, Sahin M. Application of the extreme learning machine algorithm for the prediction of monthly Effective Drought Index in eastern Australia. Atmospheric Research. 2015; 153: 512-525. ]32[ Park S, Im J, Jang E, RheeJ. Drought assessment and monitoring through blending of multi-sensor indices using machine learning approaches for different climate regions. Agricultural and Forest Meteorology. 2016; 216: 157- 169. ]33[ Jaafarzadeh M, Tahmasebi N, Hagizaeh A, Pourghasemi H.R, Rouhani H Prediction of susceptible areas for groundwater recharge based on maximum entropy model. Adv. Appl. Geol. 2022; 11(4): 723-739 (Persian). ]34[ Rahmati A, Tahmasbpour N, Haqizadeh A, Pourqasmi H, Faizizadeh B. Evaluation of the effectiveness of the maximum entropy model in predicting the potential for watershed erosion in the Keshkan-Poldakhter watershed. Scientific-Research Journal of Watershed Engineering and Management. 2019; 10(4): 727-738 (Persian). ]35[ Faryabi M. Investigating the impact of large floods of the Halilroud river on the groundwater level of the aquifer in the Jiroft plain. The 10th International Conference on Rain Catchment Surface Systems, November 1400 (Persian). ]36[ Porsidi A, Kashkouli H. A. study of the underground water condition of Jiroft Plain with the help of PMWIN model, Irrigation Science and Engineering (Scientific Journal of Agriculture). 35(2) (Persian). ]37[ Saif M, Mosaedi A, and Mohammadzadeh H. Investigation of hydrological drought of Fasa plain aquifer using underground water resource index (GRI). 2013;The 15th conference of the Geological Society of Iran. ]38[ Mendicino G, Senatore A, Versace P. A Groundwater Resource Index (GRI) for drought monitoring and forecasting in a Mediterranean climate. Hydrology Journal. 2008; 357: 282-302 (Persian). ]39[ Fatehi Merj A, Vahidian S. Survey of meteorological drought, hydrological agriculture using GIS in Khuzestan province. Iran Watershed Science and Engineering Journal. 2014; 7(23): 19-32 (Persian). ]40[ Vijith H. Groundwater potential in the hard rock terrain of Western Ghats: a case study from Kottayam District, Kerala using resourcesat (IRS-P6) data and GIS techniques. Journal of Indian Society of Remote sensing. 2007; 35(2): 163–171. ]41[ Banavar J.R, Maritan A, Volkov I. Applications of the principle of maximum entropy: from physics to ecology. Journal of Physics: Condensed Matter. 2010; 22 (6): p.063101. ]42[ Luca F, Conforti M, Robustelli G. Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. Geomorphology. 2011;134 (3): 297-308. ]43[ Shannon C. A mathematical theory of communication, Bulletin System. Technology Journal. 1948; 27: 379– 423. ]44[ Khalasi Ahvazi L, Zare Chahouki M, Hosseini Z. Modeling the geographical distribution of the habitat of Artemisia aucheri and Artemisia sieberi based on presence-based methods (MaxEnt and ENFA). Journal of Renewable Natural Resources Research. 2015; 6 (1): 57-74 (Persian). ]45[ Agrawal D, Singh J.K, Kumar A. Maximum entropy-based conditional probability distribution runoff model. Biosystem Engeenering. 2005; 90 (1): 103–113. ]46[ MirAbbasi Najafabadi R, Din Pajhooh Y, Fakheri Fard A. Runoff modeling using the principle of maximum entropy (Case study: Kasilian basin). Journal of Agricultural Science and Technology and Natural Resources, Soil and Water Sciences. 2011; 15 (58): 39-51 (Persian). ]47[ Yesilnacar E.K. The application of computational intelligence to landslide susceptibility mapping in Turkey. PhD Thesis, University of Melbourne.2005; 423 pages. ]48[ Damavandi A.A, Rezaei F. & Panahi M. Potential of Groundwater Resources Using Remote Sensing and Geographic Information System Case Study: Saleh Ben Watershed. 2011; 2nd Earth Sciences Conference. 1-9 ( Persian). ]49[ Hosmer D.W, Lemeshow S. Applied Logistic Regression. Second edition. New York 392 pp, NY, USA: John Wiley and Sons. 2000. ]50[ Kheirkhah M, Mohebi Tafreshi GH, Majidi A, Asadian F. Using Integration GIS and Remote Sensing Techniques by Decision Support System to Locate Suitable Areas construction of Underground Dam (The Case Study of Qazvin province). Iranian Journal of Watershed Management Science. 2014; 8 (26): 35-50 (Persian) | ||
آمار تعداد مشاهده مقاله: 139 تعداد دریافت فایل اصل مقاله: 98 |