
تعداد نشریات | 162 |
تعداد شمارهها | 6,683 |
تعداد مقالات | 72,057 |
تعداد مشاهده مقاله | 128,910,046 |
تعداد دریافت فایل اصل مقاله | 101,695,366 |
Improving the Antioxidant Status, Meat Quality, and Immune Response of Broilers by Fermented Feather Meal | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 10، دوره 19، شماره 2، تیر 2025، صفحه 279-298 اصل مقاله (1.62 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.2.1005483 | ||
نویسندگان | ||
Hassan Safari* ؛ Ardeshir Mohit؛ Maziar Mohiti-Asli | ||
Department of Animal Science, Faculty of Agriculture Science, University of Guilan, Rasht, Iran. | ||
چکیده | ||
Background: Feather biodegradation is an effective alternative to other processing methods. Objectives: This study aims to investigate the effects of hydrolyzed feather meal (HFM) on broilers’ antioxidant status, meat quality, and immune response. Methods: In October 2022, 480-day-old Ross 308 male broilers were used for 42 days in a completely randomized design with eight treatments and five replicates (12 chicks/replicate) in the research farm of Agriculture Faculty, Guilan University (Rasht City, Iran). The experimental diets were as follows: (1) control diet (without feather meal [FM]), (2), (3), (4), (5), (6), (7), and (8) all containing 4% raw FM (RFM), HFM by autoclave (Au-HFM), fermented FM (FFM) by Bacillus licheniformis (Bl-FFM), FFM by Bacillus subtilis (Bs-FFM), FFM by Aspergillus niger (An-FFM), FFM by B. licheniformis+B. subtilis+A. niger (Co-FFM), and HFM by an enzyme (En-HFM), respectively. Results: The results of the in vitro experiment showed that 2,2-diphenyl-1-picrylhydrazl (DPPH) and 2, 2ʹ-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid (ABTS) radical-scavenging activities, as well as microorganism count of FFM, increased with increasing fermentation time (P≤0.05). Also, the pH of FFM significantly decreased by increasing the fermentation time (P≤0.05). The DPPH and ABTS radical-scavenging activities of FFM were higher than those of RFM, Au-HFM, and En-HFM (P≤0.05). The in vivo experiment results showed that the total antioxidant capacity (TAC) serum levels, glutathione peroxidase (GPX), superoxide dismutase (SOD), and catalase (CAT) in the FFM were higher than those in the control and other treatments (P≤0.05). Compared to control and other treatments, broilers fed FFM had lower meat malondialdehyde (MDA) levels, higher meat pH, and higher water-holding capacity at 0, 7, and 14 d of the breast meat storage, as well as lower serum MDA levels (P≤0.05). Broilers fed FFM had higher antibody titers against Newcastle disease virus, lower heterophil count, and lower heterophil-to-lymphocyte ratio, as well as higher total anti-sheep red blood cell (anti-SRBC) titer, immunoglobulin G (IgG), and immunoglobulin M (IgM), compared to the control and other treatments (P≤0.05). Conclusion: Fermentation of FM increased its antioxidant properties, improved the body’s antioxidative status, and contributing to improved the meat quality and immune response of broilers. | ||
کلیدواژهها | ||
Biodegradation؛ Broiler chicken؛ Feather meal (FM)؛ Fermentation؛ Radical scavenging | ||
اصل مقاله | ||
Introduction
In vitro experiment
In vivo experiment
Funding
Abdelmoteleb, A., Gonzalez-Mendoza, , Tzintzun-Camacho, O., Grimaldo-Juárez, O., Mendez-Trujillo, V., & Moreno-Cruz, C., et al. (2023). Keratinases from Streptomyces netropsis and Bacillus subtilis and their potential use in the chicken feather degrading. Fermentation, 9(2), 96. [DOI:10.3390/fermentation9020096] Ajayi, H., & Akoma, O. (2017). Performance and carcass characteristics of broiler chickens fed low protein diets containing hydrolysed feather meal, with or without protease supplementation. BIU Journal of Basic and Applied Sciences, 3(1), 20-30.[Link] Al-Abdaly, Y. Z., Alfathi, M. Y., & Al-mahmood, S. S. (2023). Comparison of azithromy cin toxicity in chickens and quails. Iranian Journal of Veterinary Medicine, 17(4), 321-332.[DOI:10.32598/IJVM.17.4.1005354] Alahyaribeik, S., Nazarpour, M., Tabandeh, F., Honarbakhsh, S., & Sharifi, S. D. (2022). Effects of bioactive peptides derived from feather keratin on plasma cholesterol level, lipid oxidation of meat, and performance of broiler chicks. Tropical Animal Health and Production, 54(5), 271. [DOI:10.1007/s11250-022-03244-1] [PMID] Al-Muhammadawi, N. A., & Jassim Hammoudi, S. (2022). Effect of adding different levels of therapeutic curcuma on productive traits in broiler chickens. Archives of Razi Institute, 77(6), 2059-2064. [PMID] Aristides, L. G. A., Venancio, E. J., Alfieri, A. A., Otonel, R. A. A., Frank, W. J., & Oba, A. (2018). Carcass characteristics and meat quality of broilers fed with different levels of Saccharomyces cerevisiae fermentation product. Poultry Science, 97(9), 3337–3342. [DOI:10.3382/ps/pey174] [PMID] Ashayerizadeh, A., Dastar, B., Shams Shargh, M., Sadeghi Mahoonak, A., & Zerehdaran, S. (2017). Fermented rapeseed meal is effective in controlling Salmonella enterica serovar Typhimurium infection and improving growth performance in broiler chicks. Veterinary Microbiology, 201, 93-102. [DOI:10.1016/j.vetmic.2017.01.007] [PMID] Belewu, M., Asafa, , & Ogunleke, F. (2008). Processing of feather meal by solid state fermentation. Biotechnology, 7(3), 589-591. [DOI:10.3923/biotech.2008.589.591] Ben Hamad Bouhamed, S., Krichen, F., & Kechaou, N. (2020). Feather protein hydrolysates: A study of physicochemical, functional properties and antioxidant activity. Waste and Biomass Valorization, 11, 51-62. [DOI:10.1007/s12649-018-0451-2] Bezus, B., Ruscasso, F., Garmendia, G., Vero, S., Cavello, I., & Cavalitto, S. (2021). Revalorization of chicken feather waste into a high antioxidant activity feather protein hydrolysate using a novel psychrotolerant bacterium. Biocatalysis and Agricultural Biotechnology, 32, [DOI:10.1016/j.bcab.2021.101925] Callegaro, K., Welter, N., & Daroit, D. J. (2018). Feathers as bioresource: Microbial conversion into bioactive protein hydrolysates. Process Biochemistry, 75, 1-9. [DOI:10.1016/j.procbio.2018.09.002] Chang, Y., Omer, S. H. S., Li, G., Lian, H., & Liu, Y. (2022). Research advance on application of microbial fermented fodder in broilers production: A short review. Open Journal of Animal Sciences, 12(2), 200-209. [DOI:10.4236/ojas.2022.122015] Drazbo, A., Ognik, K., Zaworska, A., Ferenc, K., & Jankowski, J. (2018). The effect of raw and fermented rapeseed cake on the metabolic parameters, immune status, and intestinal morphology of turkeys. Poultry Science, 97(11), 3910-3920. [DOI:10.3382/ps/pey250] [PMID] Elbaz, A. M., El-Sheikh, S. E., & AbdelMaksoud, A. (2023). Growth performance, nutrient digestibility, antioxidant state, ileal histomorphometry, and cecal ecology of broilers fed on fermented canola meal with and without exogenous enzymes. Tropical Animal Health and Production, 55(1), 46. [DOI:10.1007/s11250-023-03476-9][PMID] Engberg, R. M., Hammershøj, M., Johansen, N. F., Abousekken, M. S., Steenfeldt, S., & Jensen, B. B. (2009). Fermented feed for laying hens: Effects on egg production, egg quality, plumage condition and composition and activity of the intestinal microflora. British Poultry Science, 50(2), 228-23 [DOI:10.1080/00071660902736722] [PMID] Fakhfakh, N., Ktari, N., Haddar, A., Mnif, I. H., Dahmen, I., & Nasri, M. (2011). Total solubilisation of the chicken feathers by fermentation with a keratinolytic bacterium, Bacillus pumilus A1, and the production of protein hydrolysate with high antioxidative activity. Process Biochemistry, 46(9), 1731-1737. [DOI:10.1016/j.procbio.2011.05.023] Gholipour-Shoshod, A., Rahimi, S., Zahraei Salehi, T., Karimi Torshizi, M. A., Behnamifar, A., & Ebrahimi, T., et al. (2023). Evaluating the competitiveness of medicinal plants with antibiotics to control salmonella enterica serovar typhimurium in broiler chickens. Iranian Journal of Veterinary Medicine, 17(2), 155-166. [DOI:10.32598/IJVM.17.2.1005233] Gu, X., Li, Z., Wang,, Chen, J., Jiang, Q., & Liu, N., et al. (2021). Fermented cottonseed meal as a partial replacement for soybean meal could improve the growth performance, immunity and antioxidant properties, and nutrient digestibility by altering the gut microbiota profile of weaned piglets. Frontiers in Microbiology, 12, 734389. [DOI:10.3389/fmicb.2021.734389][PMID] Hosseinian, A., Abdi Hachesoo, B., Nazifi, S., Hashemi Hezaveh, A., Hashemi Tabar, H., & Rezapoor, R., A. (2021). Cardioprotective and hepatoprotective activity of silymarin in broiler chickens fed on mash and pellet diets. Iranian Journal of Veterinary Medicine, 15(1), 104-121. [DOI:10.22059/ijvm.2020.302033.1005084] Hosseini-Vashan, S. J., & Piray, A. H. (2021). Effect of dietary saffron (Crocus sativus) petal extract on growth performance, blood biochemical indices, antioxidant balance, and immune responses of broiler chickens reared under heat stress conditions. Italian Journal of Animal Science, 20(1), 1338-1347. [DOI:10.1080/1828051X.2021.1921628] Huang, H. J., Weng, B. C., Lee, Y. S., Lin, C. Y., Hsuuw, Y. D., & Chen, K. L. (2022). The effects of two-stage fermented feather meal-soybean meal product on growth performance, blood biochemistry, and immunity of nursery pigs. Fermentation, 8(11), 634. [DOI:10.3390/fermentation8110634] Huang, Y., Liu, X., Ran, Y., Cao, Q., Zhang, A., & Li, D. (2019). Production of feather oligopeptides by a newly isolated bacterium Pseudomonas otitis H11. Poultry Science,3382/ps/pez030. Advance online. [PMID] Ibrahim, D., Moustafa, A., Shahin, S. E., Sherief, W. R. I. A., Abdallah, K., & Farag, M. F. M., etal. (2021). Impact of fermented or enzymatically fermented dried olive pomace on growth, expression of digestive enzyme and glucose transporter genes, oxidative stability of frozen meat, and economic efficiency of broiler chickens. Frontiers in Veterinary Science, 8, [DOI:10.3389/fvets.2021.644325][PMID] Jazi, V., Boldaji, F., Dastar, B., Hashemi, S. R., & Ashayerizadeh, A. (2017). Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens. British Poultry Science, 58(4), 402–408. [DOI:10.1080/00071668.2017.1315051] [PMID] Jazi, V., Mohebodini, H., Ashayerizadeh, A., Shabani, A., & Barekatain, R. (2019). Fermented soybean meal ameliorates Salmonella Typhimurium infection in young broiler chickens. Poultry Science, 98(11), 5648-5660. [DOI:10.3382/ps/pez338] [PMID] Jeampakdee,, Puthong, S., Srimongkol, P., Sangtanoo, P., Saisavoey, T., & Karnchanatat, A. (2020). The apoptotic and free radical-scavenging abilities of the protein hydrolysate obtained from chicken feather meal. Poultry Science, 99(3), 1693-1704. [DOI:10.1016/j.psj.2019.10.050][PMID] Kshetri, P., Singh, P. L., Chanu, S. B., Singh, T. S., Rajiv, C., & Tamreihao, K., et al. (2022). Biological activity of peptides isolated from feather keratin waste through microbial and enzymatic hydrolysis. Electronic Journal of Biotechnology, 60, 11-18. [DOI:10.1016/j.ejbt.2022.08.001] Liu, S., Yan, W., Ma, C., Liu, Y., Gong, L., & Levesque, C., et al. (2020). Effects of supplemented culture media from solid-state fermented Isaria cicadae on performance, serum biochemical parameters, serum immune indexes, antioxidant capacity and meat quality of broiler chickens. Asian-Australasian Journal of Animal Sciences, 33(4), 568-578. [DOI:10.5713/ajas.19.0179][PMID] Majdi Abdelfaraj, K., Mohamed Idris, A., & Mohamed M, (2023). Effect of diet supplemented with different levels of moringa powder on growth performance, carcass characteristics, meat quality, hematological parameters, serum lipids, and economic efficiency of broiler chickens. Archives of Razi Institute, 78(5), 1647–1656. [DOI:10.32592/ARI.2023.78.5.1647][PMID] Mohammed Awad, A. (2023). Effect of supplementation of diets with L-Carnitine and Methionin on broiler chicken productive performance. Archives of Razi Institute, 78(1), 345-352. [PMID] Morovati, S., Bassami, M. R., Kalidari, G. A., Tavassoli, A., Razmyar, J., & Seno, M. M. G. (2022). Characterization of the Full length P and M genes in a Newcastle Disease Virus Isolated from Chicken Farms in Northeast of Iran Sarcoid. Iranian Journal of Veterinary Medicine, 16(2), 126-143. [DOI:10.22059/ijvm.2021.315021.1005144] Obaid Saleh, R., Jawdat Abdul-Abbas, S., Naji Aziz, S., Ghazi Al-Shawi, S., Yacoob Yousif, A., & Ahmed Hamza, T., et al. (2022). Evaluation of the effect of peppermint extract and probiotics on biochemical factors in the blood of ascites-induced chickens. Archives of Razi Institute, 77(6), 2243-2250. [PMID] Oluseun, A. I., Oluwaseun, A. C., Ogundipe, K., & Ndudi, O. S. (2016). Chemical composition and amino acid profile of differently processed feather meal. Journal of Agricultural Sciences (Belgrade), 61(3), 237-246. [DOI:10.2298/JAS1603237A] Partovi, R., Seifi, S., Samakkhah, S. A., & Nikpay, A. (2021). Appraisal of dietary prebiotic supplementation on meat properties and carcass characteristics of broiler chickens after experimental infection with eimeria species. Iranian Journal of Veterinary Medicine, 15(3), 346-357. [Link] Pei, X. D., Li, F., Gao, T. T., Su, L. Y., Yu, F. T., & Shi, P., et al. (2023). Utilization of feather keratin waste to antioxidant and migration-enhancer peptides by Bacillus licheniformis 8-4. Journal of Applied Microbiology, 134(2), lxad005. [DOI:10.1093/jambio/lxad005] [PMID] Prajapati, S., Koirala, S., & Anal, A. K. (2021). Bioutilization of chicken feather waste by newly isolated keratinolytic bacteria and conversion into protein hydrolysates with improved functionalities. Applied Biochemistry and Biotechnology, 193(8), 2497–2515. DOI:10.1007/s12010-021-03554-4] [PMID] Rafat Khafar, K., Mojtahedin, A., Rastegar, N., Kalvani Neytali, M., & Olfati, A. (2019). Dietary inclusion of thyme essential oil alleviative effects of heat stress on growth performance and immune system of broiler chicks. Iranian Journal of Applied Animal Science, 9(3), 509-517. [Link] SAS Institut (2009). SAS®/STAT Software, Release 9.2. Cary, NC: SAS Institute, Inc. [Link] Safari, H., Mohit, A., & Mohiti-Asli, M. (2016). Influence of dietary supplementation of dried purslane (Portulaca oleracea L.) powder on growth performance and susceptibility of chicken thigh muscle to lipid oxidation during frozen storage conditions. Indian Journal of Animal Nutrition, 33(2), 169-175. [DOI:10.5958/2231-6744.2016.00029.3] Saisavoey, T., Sangtanoo, P., Reamtong, O., & Karnchanatat, A. (2019). Free radical scavenging and anti‐inflammatory potential of a protein hydrolysate derived from salmon bones on RAW 264.7 macrophage cells. Journal of the Science of Food and Agriculture, 99(11), 5112-5121. [DOI:10.1002/jsfa.9755] [PMID] Salehi, S., Sadeghi, A., & Karimi, A. (2021). Growth performance, nutrients digestibility, caecum microbiota, antioxidant status and immunity of broilers as influenced by kombucha fermented on white sugar or sugar beet molasses. Italian Journal of Animal Science, 20(1), 1770-1780. [DOI:10.1080/1828051X.2021.1941335] Shihab, S. K., & Nafea, H. H. (2023). Effect of adding cordyceps sinensis extract and probiotic to the diet on productive performance of broiler. Archives of Razi Institute, 78(2), 659-666. [DOI:10.22092/ari.2022.359478.2430] Sugiharto, S., Yudiarti, T., Isroli, I., Widiastuti, E., Wahyuni, H. I., & Sartono, T. A. (2019). Fermented feed as a potential source of natural antioxidants for broiler chickens-a mini review. Agriculturae Conspectus Scientificus, 84(4), 313-318. [Link] Wiradimadja, R., Rusmana, D., Widjastuti, T., & Mushawwir, A. (2014). Chicken slaughterhouse waste utilization (chicken feather meal treated) as a source of protein animal feed ingredients in broiler chickens. Lucrări Ştiinţifice - Seria Zootehnie, 62, 120-124. [Link] Xie, M., Wang, R., Wang, Y., Liu, N., & Qi, J. (2021). Effects of dietary supplementation with fermented Chenopodium album L. on growth, nutrient digestibility, immunity, carcase characteristics and meat quality of broilers. Italian Journal of Animal Science, 20(1), 2063-2074. [DOI:10.1080/1828051X.2021.1996289] Xu, K. L., Gong, G. X., Liu, M., Yang, L., Xu, Z. J., & Gao, S., et al. (2022). Keratinase improves the growth performance, meat quality and redox status of broiler chickens fed a diet containing feather meal. Poultry Science, 101(6), 101913. [DOI:10.1016/j.psj.2022.101913][PMID] Xu, Y., Yu, Y., Shen, Y., Li, Q., Lan, J., & Wu, Y., et al. (2021). Effects of Bacillus subtilis and Bacillus licheniformis on growth performance, immunity, short chain fatty acid production, antioxidant capacity, and cecal microflora in broilers. Poultry Science, 100(9), 101358. [DOI:10.1016/j.psj.2021.101358][PMID] Zhu, F., Zhang, B., Li, J., & Zhu, L. (2020). Effects of fermented feed on growth performance, immune response, and antioxidant capacity in laying hen chicks and the underlying molecular mechanism involving nuclear factor-κ Poultry Science, 99(5), 2573-2580. [DOI:10.1016/j.psj.2019.12.044][PMID] | ||
مراجع | ||
Abdelmoteleb, A., Gonzalez-Mendoza, , Tzintzun-Camacho, O., Grimaldo-Juárez, O., Mendez-Trujillo, V., & Moreno-Cruz, C., et al. (2023). Keratinases from Streptomyces netropsis and Bacillus subtilis and their potential use in the chicken feather degrading. Fermentation, 9(2), 96. [DOI:10.3390/fermentation9020096]
Ajayi, H., & Akoma, O. (2017). Performance and carcass characteristics of broiler chickens fed low protein diets containing hydrolysed feather meal, with or without protease supplementation. BIU Journal of Basic and Applied Sciences, 3(1), 20-30.[Link]
Al-Abdaly, Y. Z., Alfathi, M. Y., & Al-mahmood, S. S. (2023). Comparison of azithromy cin toxicity in chickens and quails. Iranian Journal of Veterinary Medicine, 17(4), 321-332.[DOI:10.32598/IJVM.17.4.1005354]
Alahyaribeik, S., Nazarpour, M., Tabandeh, F., Honarbakhsh, S., & Sharifi, S. D. (2022). Effects of bioactive peptides derived from feather keratin on plasma cholesterol level, lipid oxidation of meat, and performance of broiler chicks. Tropical Animal Health and Production, 54(5), 271. [DOI:10.1007/s11250-022-03244-1] [PMID]
Al-Muhammadawi, N. A., & Jassim Hammoudi, S. (2022). Effect of adding different levels of therapeutic curcuma on productive traits in broiler chickens. Archives of Razi Institute, 77(6), 2059-2064. [PMID]
Aristides, L. G. A., Venancio, E. J., Alfieri, A. A., Otonel, R. A. A., Frank, W. J., & Oba, A. (2018). Carcass characteristics and meat quality of broilers fed with different levels of Saccharomyces cerevisiae fermentation product. Poultry Science, 97(9), 3337–3342. [DOI:10.3382/ps/pey174] [PMID]
Ashayerizadeh, A., Dastar, B., Shams Shargh, M., Sadeghi Mahoonak, A., & Zerehdaran, S. (2017). Fermented rapeseed meal is effective in controlling Salmonella enterica serovar Typhimurium infection and improving growth performance in broiler chicks. Veterinary Microbiology, 201, 93-102. [DOI:10.1016/j.vetmic.2017.01.007] [PMID]
Belewu, M., Asafa, , & Ogunleke, F. (2008). Processing of feather meal by solid state fermentation. Biotechnology, 7(3), 589-591. [DOI:10.3923/biotech.2008.589.591]
Ben Hamad Bouhamed, S., Krichen, F., & Kechaou, N. (2020). Feather protein hydrolysates: A study of physicochemical, functional properties and antioxidant activity. Waste and Biomass Valorization, 11, 51-62. [DOI:10.1007/s12649-018-0451-2]
Bezus, B., Ruscasso, F., Garmendia, G., Vero, S., Cavello, I., & Cavalitto, S. (2021). Revalorization of chicken feather waste into a high antioxidant activity feather protein hydrolysate using a novel psychrotolerant bacterium. Biocatalysis and Agricultural Biotechnology, 32, [DOI:10.1016/j.bcab.2021.101925]
Callegaro, K., Welter, N., & Daroit, D. J. (2018). Feathers as bioresource: Microbial conversion into bioactive protein hydrolysates. Process Biochemistry, 75, 1-9. [DOI:10.1016/j.procbio.2018.09.002]
Chang, Y., Omer, S. H. S., Li, G., Lian, H., & Liu, Y. (2022). Research advance on application of microbial fermented fodder in broilers production: A short review. Open Journal of Animal Sciences, 12(2), 200-209. [DOI:10.4236/ojas.2022.122015]
Drazbo, A., Ognik, K., Zaworska, A., Ferenc, K., & Jankowski, J. (2018). The effect of raw and fermented rapeseed cake on the metabolic parameters, immune status, and intestinal morphology of turkeys. Poultry Science, 97(11), 3910-3920. [DOI:10.3382/ps/pey250] [PMID]
Elbaz, A. M., El-Sheikh, S. E., & AbdelMaksoud, A. (2023). Growth performance, nutrient digestibility, antioxidant state, ileal histomorphometry, and cecal ecology of broilers fed on fermented canola meal with and without exogenous enzymes. Tropical Animal Health and Production, 55(1), 46. [DOI:10.1007/s11250-023-03476-9][PMID]
Engberg, R. M., Hammershøj, M., Johansen, N. F., Abousekken, M. S., Steenfeldt, S., & Jensen, B. B. (2009). Fermented feed for laying hens: Effects on egg production, egg quality, plumage condition and composition and activity of the intestinal microflora. British Poultry Science, 50(2), 228-23 [DOI:10.1080/00071660902736722] [PMID]
Fakhfakh, N., Ktari, N., Haddar, A., Mnif, I. H., Dahmen, I., & Nasri, M. (2011). Total solubilisation of the chicken feathers by fermentation with a keratinolytic bacterium, Bacillus pumilus A1, and the production of protein hydrolysate with high antioxidative activity. Process Biochemistry, 46(9), 1731-1737. [DOI:10.1016/j.procbio.2011.05.023]
Gholipour-Shoshod, A., Rahimi, S., Zahraei Salehi, T., Karimi Torshizi, M. A., Behnamifar, A., & Ebrahimi, T., et al. (2023). Evaluating the competitiveness of medicinal plants with antibiotics to control salmonella enterica serovar typhimurium in broiler chickens. Iranian Journal of Veterinary Medicine, 17(2), 155-166. [DOI:10.32598/IJVM.17.2.1005233]
Gu, X., Li, Z., Wang,, Chen, J., Jiang, Q., & Liu, N., et al. (2021). Fermented cottonseed meal as a partial replacement for soybean meal could improve the growth performance, immunity and antioxidant properties, and nutrient digestibility by altering the gut microbiota profile of weaned piglets. Frontiers in Microbiology, 12, 734389. [DOI:10.3389/fmicb.2021.734389][PMID]
Hosseinian, A., Abdi Hachesoo, B., Nazifi, S., Hashemi Hezaveh, A., Hashemi Tabar, H., & Rezapoor, R., A. (2021). Cardioprotective and hepatoprotective activity of silymarin in broiler chickens fed on mash and pellet diets. Iranian Journal of Veterinary Medicine, 15(1), 104-121. [DOI:10.22059/ijvm.2020.302033.1005084]
Hosseini-Vashan, S. J., & Piray, A. H. (2021). Effect of dietary saffron (Crocus sativus) petal extract on growth performance, blood biochemical indices, antioxidant balance, and immune responses of broiler chickens reared under heat stress conditions. Italian Journal of Animal Science, 20(1), 1338-1347. [DOI:10.1080/1828051X.2021.1921628]
Huang, H. J., Weng, B. C., Lee, Y. S., Lin, C. Y., Hsuuw, Y. D., & Chen, K. L. (2022). The effects of two-stage fermented feather meal-soybean meal product on growth performance, blood biochemistry, and immunity of nursery pigs. Fermentation, 8(11), 634. [DOI:10.3390/fermentation8110634]
Huang, Y., Liu, X., Ran, Y., Cao, Q., Zhang, A., & Li, D. (2019). Production of feather oligopeptides by a newly isolated bacterium Pseudomonas otitis H11. Poultry Science,3382/ps/pez030. Advance online. [PMID]
Ibrahim, D., Moustafa, A., Shahin, S. E., Sherief, W. R. I. A., Abdallah, K., & Farag, M. F. M., etal. (2021). Impact of fermented or enzymatically fermented dried olive pomace on growth, expression of digestive enzyme and glucose transporter genes, oxidative stability of frozen meat, and economic efficiency of broiler chickens. Frontiers in Veterinary Science, 8, [DOI:10.3389/fvets.2021.644325][PMID]
Jazi, V., Boldaji, F., Dastar, B., Hashemi, S. R., & Ashayerizadeh, A. (2017). Effects of fermented cottonseed meal on the growth performance, gastrointestinal microflora population and small intestinal morphology in broiler chickens. British Poultry Science, 58(4), 402–408. [DOI:10.1080/00071668.2017.1315051] [PMID]
Jazi, V., Mohebodini, H., Ashayerizadeh, A., Shabani, A., & Barekatain, R. (2019). Fermented soybean meal ameliorates Salmonella Typhimurium infection in young broiler chickens. Poultry Science, 98(11), 5648-5660. [DOI:10.3382/ps/pez338] [PMID]
Jeampakdee,, Puthong, S., Srimongkol, P., Sangtanoo, P., Saisavoey, T., & Karnchanatat, A. (2020). The apoptotic and free radical-scavenging abilities of the protein hydrolysate obtained from chicken feather meal. Poultry Science, 99(3), 1693-1704. [DOI:10.1016/j.psj.2019.10.050][PMID]
Kshetri, P., Singh, P. L., Chanu, S. B., Singh, T. S., Rajiv, C., & Tamreihao, K., et al. (2022). Biological activity of peptides isolated from feather keratin waste through microbial and enzymatic hydrolysis. Electronic Journal of Biotechnology, 60, 11-18. [DOI:10.1016/j.ejbt.2022.08.001]
Liu, S., Yan, W., Ma, C., Liu, Y., Gong, L., & Levesque, C., et al. (2020). Effects of supplemented culture media from solid-state fermented Isaria cicadae on performance, serum biochemical parameters, serum immune indexes, antioxidant capacity and meat quality of broiler chickens. Asian-Australasian Journal of Animal Sciences, 33(4), 568-578. [DOI:10.5713/ajas.19.0179][PMID]
Majdi Abdelfaraj, K., Mohamed Idris, A., & Mohamed M, (2023). Effect of diet supplemented with different levels of moringa powder on growth performance, carcass characteristics, meat quality, hematological parameters, serum lipids, and economic efficiency of broiler chickens. Archives of Razi Institute, 78(5), 1647–1656. [DOI:10.32592/ARI.2023.78.5.1647][PMID]
Mohammed Awad, A. (2023). Effect of supplementation of diets with L-Carnitine and Methionin on broiler chicken productive performance. Archives of Razi Institute, 78(1), 345-352. [PMID]
Morovati, S., Bassami, M. R., Kalidari, G. A., Tavassoli, A., Razmyar, J., & Seno, M. M. G. (2022). Characterization of the Full length P and M genes in a Newcastle Disease Virus Isolated from Chicken Farms in Northeast of Iran Sarcoid. Iranian Journal of Veterinary Medicine, 16(2), 126-143. [DOI:10.22059/ijvm.2021.315021.1005144]
Obaid Saleh, R., Jawdat Abdul-Abbas, S., Naji Aziz, S., Ghazi Al-Shawi, S., Yacoob Yousif, A., & Ahmed Hamza, T., et al. (2022). Evaluation of the effect of peppermint extract and probiotics on biochemical factors in the blood of ascites-induced chickens. Archives of Razi Institute, 77(6), 2243-2250. [PMID]
Oluseun, A. I., Oluwaseun, A. C., Ogundipe, K., & Ndudi, O. S. (2016). Chemical composition and amino acid profile of differently processed feather meal. Journal of Agricultural Sciences (Belgrade), 61(3), 237-246. [DOI:10.2298/JAS1603237A]
Partovi, R., Seifi, S., Samakkhah, S. A., & Nikpay, A. (2021). Appraisal of dietary prebiotic supplementation on meat properties and carcass characteristics of broiler chickens after experimental infection with eimeria species. Iranian Journal of Veterinary Medicine, 15(3), 346-357. [Link]
Pei, X. D., Li, F., Gao, T. T., Su, L. Y., Yu, F. T., & Shi, P., et al. (2023). Utilization of feather keratin waste to antioxidant and migration-enhancer peptides by Bacillus licheniformis 8-4. Journal of Applied Microbiology, 134(2), lxad005. [DOI:10.1093/jambio/lxad005] [PMID]
Prajapati, S., Koirala, S., & Anal, A. K. (2021). Bioutilization of chicken feather waste by newly isolated keratinolytic bacteria and conversion into protein hydrolysates with improved functionalities. Applied Biochemistry and Biotechnology, 193(8), 2497–2515. DOI:10.1007/s12010-021-03554-4] [PMID]
Rafat Khafar, K., Mojtahedin, A., Rastegar, N., Kalvani Neytali, M., & Olfati, A. (2019). Dietary inclusion of thyme essential oil alleviative effects of heat stress on growth performance and immune system of broiler chicks. Iranian Journal of Applied Animal Science, 9(3), 509-517. [Link]
SAS Institut (2009). SAS®/STAT Software, Release 9.2. Cary, NC: SAS Institute, Inc. [Link]
Safari, H., Mohit, A., & Mohiti-Asli, M. (2016). Influence of dietary supplementation of dried purslane (Portulaca oleracea L.) powder on growth performance and susceptibility of chicken thigh muscle to lipid oxidation during frozen storage conditions. Indian Journal of Animal Nutrition, 33(2), 169-175. [DOI:10.5958/2231-6744.2016.00029.3]
Saisavoey, T., Sangtanoo, P., Reamtong, O., & Karnchanatat, A. (2019). Free radical scavenging and anti‐inflammatory potential of a protein hydrolysate derived from salmon bones on RAW 264.7 macrophage cells. Journal of the Science of Food and Agriculture, 99(11), 5112-5121. [DOI:10.1002/jsfa.9755] [PMID]
Salehi, S., Sadeghi, A., & Karimi, A. (2021). Growth performance, nutrients digestibility, caecum microbiota, antioxidant status and immunity of broilers as influenced by kombucha fermented on white sugar or sugar beet molasses. Italian Journal of Animal Science, 20(1), 1770-1780. [DOI:10.1080/1828051X.2021.1941335]
Shihab, S. K., & Nafea, H. H. (2023). Effect of adding cordyceps sinensis extract and probiotic to the diet on productive performance of broiler. Archives of Razi Institute, 78(2), 659-666. [DOI:10.22092/ari.2022.359478.2430]
Sugiharto, S., Yudiarti, T., Isroli, I., Widiastuti, E., Wahyuni, H. I., & Sartono, T. A. (2019). Fermented feed as a potential source of natural antioxidants for broiler chickens-a mini review. Agriculturae Conspectus Scientificus, 84(4), 313-318. [Link]
Wiradimadja, R., Rusmana, D., Widjastuti, T., & Mushawwir, A. (2014). Chicken slaughterhouse waste utilization (chicken feather meal treated) as a source of protein animal feed ingredients in broiler chickens. Lucrări Ştiinţifice - Seria Zootehnie, 62, 120-124. [Link]
Xie, M., Wang, R., Wang, Y., Liu, N., & Qi, J. (2021). Effects of dietary supplementation with fermented Chenopodium album L. on growth, nutrient digestibility, immunity, carcase characteristics and meat quality of broilers. Italian Journal of Animal Science, 20(1), 2063-2074. [DOI:10.1080/1828051X.2021.1996289]
Xu, K. L., Gong, G. X., Liu, M., Yang, L., Xu, Z. J., & Gao, S., et al. (2022). Keratinase improves the growth performance, meat quality and redox status of broiler chickens fed a diet containing feather meal. Poultry Science, 101(6), 101913. [DOI:10.1016/j.psj.2022.101913][PMID]
Xu, Y., Yu, Y., Shen, Y., Li, Q., Lan, J., & Wu, Y., et al. (2021). Effects of Bacillus subtilis and Bacillus licheniformis on growth performance, immunity, short chain fatty acid production, antioxidant capacity, and cecal microflora in broilers. Poultry Science, 100(9), 101358. [DOI:10.1016/j.psj.2021.101358][PMID]
Zhu, F., Zhang, B., Li, J., & Zhu, L. (2020). Effects of fermented feed on growth performance, immune response, and antioxidant capacity in laying hen chicks and the underlying molecular mechanism involving nuclear factor-κ Poultry Science, 99(5), 2573-2580. [DOI:10.1016/j.psj.2019.12.044][PMID]
| ||
آمار تعداد مشاهده مقاله: 201 تعداد دریافت فایل اصل مقاله: 456 |