تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,506 |
تعداد مشاهده مقاله | 124,125,416 |
تعداد دریافت فایل اصل مقاله | 97,233,817 |
مقایسة الگوریتم های Bioclim، MaxNet و MaxEnt در پیش بینی پراکنش کبک دری خزری (Tetraogallus caspius) در ایران | ||
نشریه محیط زیست طبیعی | ||
دوره 77، ویژه نامه بوم شناسی و مدیریت تنوع زیستی، مرداد 1403، صفحه 163-174 اصل مقاله (1.06 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jne.2024.369895.2630 | ||
نویسندگان | ||
مرضیه مرادی1؛ محمدرضا اشرف زاده* 1؛ علی اصغر نقی پور2 | ||
1گروه مهندسی محیط زیست، دانشکدۀ منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران. | ||
2گروه مهندسی طبیعت، دانشکدۀ منابع طبیعی و علوم زمین، دانشگاه شهرکرد، شهرکرد، ایران. | ||
چکیده | ||
شناخت الگوهای حضور مکانی گونهها و وابستگی محیطی آنها یکی از اهداف اساسی در بومشناسی و تکامل است. در حال حاضر، بستههای نرمافزاری متعددی برای مدلسازی آشیان بومشناختی گونهها وجود دارد. بستة نرمافزاری والاس، بهعنوان ابزاری در دسترس برای محققان و متخصصان حفاظت طراحی شده است و بهعنوان یک منبع ایدهآل برای آموزش معرفی شده است. در پژوهش حاضر، با استفاده از 262 دادة حضور کبک دری خزری و 12 متغیر محیطی و انسانی و در چهارچوب یک رویکرد مقایسهای سه مدل Bioclim، MaxNet و MaxEnt، تحت بستة نرمافزاری والاس، پراکنش جغرافیایی کبک دری خزری در ایران مدلسازی شد. در هر سه مدل، مقدار عددی AUC عالی (0/96<) برآورد شد. بر اساس نتایج حاصل از سه مدل، حدود 4/6 تا 5/5 درصد از سطح کشور میتواند بهعنوان زیستگاه مطلوب کبک دری خزری در نظر گرفته شود. بر این اساس، ارتفاعات کپهداغ، البرز، زاگرس، آذربایجان و قفقاز از اهمیت زیستگاهی بالایی برای کبک دری خزری برخوردار هستند. متغیرهای ناهمواری سطح زمین (36/8درصد)، ارتفاع (20/9درصد)، همدمایی (18/6درصد) و بارش سالیانه (9/1 درصد) بیشترین اهمیت را در مدلسازی نشان دادند. بررسیهای پژوهش حاضر، علاوه بر اهمیت استفاده از الگوریتمهای مختلف در مدلسازیهای پراکنش گونهای، بر اهمیت استفاده از طیفی از متغیرها شامل توپوگرافی، پوشش گیاهی، منابع غذایی، اقلیم، گونههای همزیست، رقابت و عوامل انسانی در مدلسازی پراکنش کبک دری خزری تأکید دارد. | ||
کلیدواژهها | ||
آشیان بومشناختی؛ مدل سازی پراکنش گونهای؛ والاس؛ Tetraogallus caspius | ||
مراجع | ||
Allouche, O., Tsoar, A., Kadmon, R., 2006. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). Journal of Applied Ecology 43(6), 1223-1232. Amini Tehrani, N., Naimi, B., Jaboyedoff, M., 2020. Toward community predictions: Multi‐scale modelling of mountain breeding birds' habitat suitability, landscape preferences, and environmental drivers. Ecology and Evolution 10(12), 5544-5557. An, B., Zhang, L., Browne, S., Liu, N., Ruan, L., Song, S., 2009. Phylogeography of Tibetan snowcock (Tetraogallus tibetanus) in Qinghai–Tibetan Plateau. Molecular Phylogenetics and Evolution 50(3), 526-533. Ashrafzadeh, M. R., Habibzadeh, N., Ashrafi, S., 2018. Effects of climatic change on the geographical distribution of Caspian Snowcock (Tetraogallus caspius Gmelin, 1784) in Chaharmahal and Bakhtiari Province, Iran. Iranian Journal of Applied Ecology 7(3), 39-50. (In Persian) Ashrafzadeh, M.R., Nazarian, A.R., 2018. Habitat suitability modelling for the Caspian Snowcock (Tetraogallus caspius), as a typical high-montane species. Journal of Natural Environment 70(4), 745-756. (In Persian) Babaeian, I., Modirian, R., Karimian, M. and Zarghami, M., 2015. Simulation of climate change in Iran during 2071-2100 using PRECIS regional climate modelling system. Desert 20, 123-134. Bagaria, P., Thapa, A., Sharma, L. K., Joshi, B. D., Singh, H., Sharma, C. M., Thakur, M., Chandra, K., 2021. Distribution modelling and climate change risk assessment strategy for rare Himalayan Galliformes species using archetypal data abundant cohorts for adaptation planning. Climate Risk Management 31, 100264. Bellis, J.M., 2018. Conserving temperate montane birds under climate change: an assessment of potential management options (Doctoral dissertation, Liverpool John Moores University (United Kingdom). Bird Life International. 2016. Bird species distribution maps of the word. Version 6.0. Available at http://dataxone.birdlife.org/species/requestdis. Brown, J.L., 2014. SDMtoolbox: a python‐based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution 5(7), 694-700. Esfanjani, J., Ghorbani, A., Chahouki, M.A.Z., 2018. MaxEnt Modeling for Predicting Impacts of Environmental Factors on the Potential Distribution of Artemisia aucheri and Bromus tomentellus-Festuca ovina in Iran. Polish Journal of Environmental Studies 27(3), 1041-1047. Franklin, J., 2023. Species distribution modelling supports the study of past, present and future biogeographies. Journal of Biogeography 50(9), 1533-1545. Guillera-Arroita, G., Lahoz‐Monfort, J.J., Elith, J., Gordon, A., Kujala, H., Lentini, P.E., McCarthy, M.A., Tingley, R., Wintle, B.A., 2015. Is my species distribution model fit for purpose? Matching data and models to applications. Global Ecology and Biogeography 24(3), 276-292. Guisan, A., Thuiller, W., Zimmermann, N.E., 2017. Habitat suitability and distribution models: with applications in R. Cambridge University Press. Guisan, A., Tingley, R., Baumgartner, J.B., Naujokaitis‐Lewis, I., Sutcliffe, P.R., Tulloch, A.I., Regan, T.J., Brotons, L., McDonald‐Madden, E., Mantyka‐Pringle, C., Martin, T.G., 2013. Predicting species distributions for conservation decisions. Ecology Letters 16(12), 1424-1435. Habibzadeh, N., Ghoddousi, A., Bleyhl, B., Kuemmerle, T., 2021. Rear‐edge populations are important for understanding climate change risk and adaptation potential of threatened species. Conservation Science and Practice 3(5), e375. Hallgren, W., Santana, F., Low-Choy, S., Zhao, Y., Mackey, B., 2019. Species distribution models can be highly sensitive to algorithm configuration. Ecological Modelling 408(1), 108719. Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology: A Journal of the Royal Meteorological Society 25(15), 1965-1978. Hof, A.R., Allen, A.M., 2019. An uncertain future for the endemic Galliformes of the Caucasus. Science of the Total Environment 651(1), 725-735. Hu, H., Wei, Y., Wang, W., Wang, C., 2021. The Influence of climate change on three dominant alpine species under different scenarios on the Qinghai–Tibetan Plateau. Diversity 13(12), 682. Kass, J.M., Pinilla-Buitrago, G.E., Paz, A., Johnson, B.A., Grisales-Betancur, V., Meenan, S.I., Attali, D., Broennimann, O., Galante, P.J., Maitner, B.S., Owens, H.L., 2023. Wallace 2: a shiny app for modeling species niches and distributions redesigned to facilitate expansion via module contributions. Ecography 2023(3), e06547. Khanum, R., Mumtaz, A.S., Kumar, S., 2013. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecologica 49(1), 23-31. Kumar, S., Stohlgren, T.J., 2009. Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. Journal of Ecology and natural Environment 1(4), 94-98. Lamsal, P., Kumar, L., Aryal, A., Atreya, K., 2018. Invasive alien plant species dynamics in the Himalayan region under climate change. Ambio 47(6), 697-710. Leyequién, E., de Boer, W.F., Cleef, A., 2007. Influence of body size on coexistence of bird species. Ecological Research 22(1), 735-741. Li, R., 2019. Protecting rare and endangered species under climate change on the Qinghai Plateau, China. Ecology and Evolution 9(1), 427-436. Linshan, L., Zhilong, Z., Yili, Z., Xue, W., 2017. Using maxent model to predict suitable habitat changes for key protected species in Koshi Basin, Central Himalayas. Journal of Resources and Ecology 8(1), 77-87. Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R.K., Thuiller, W., 2009. Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions 15(1), 59-69. McCullagh, P., 1984. Generalized linear models. European Journal of Operational Research 16(3), 285-292. McGowan, P.J.K., 1994. Caspian Snowcock (Tetraogallus caspius). In: del Hoyo, J., Elliott, A., Sargatal, J., Christie, D.A., de Juana, E. (Eds), Handbook of the Birds of the World Alive. Lynx Edicions, Barcelona Mpakairi, K.S., Ndaimani, H., Tagwireyi, P., Gara, T.W., Zvidzai, M., Madhlamoto, D., 2017. Missing in action: Species competition is a neglected predictor variable in species distribution modelling. PLoS One 12(7), e0181088. Murray, H.J., Green, E.J., Williams, D.R., Burfield, I.J., Brooke, M.D.L., 2015. Is research effort associated with the conservation status of European bird species?. Endangered Species Research, 27(3), 193-206. Muscatello, A., Elith, J., Kujala. H., 2021. How decisions about fitting species distribution models affect conservation outcomes. Conservation Biology 35(4), 1309-1320. Peterson A.T. Soberón J. Pearson R.G. Anderson R.P. Martínez-Meyer E. Nakamura M. and Araújo M.B., 2012. Ecological Niches and Geographic Distributions (MPB-49), Princeton: Princeton University Press. https://doi.org/10.1515/9781400840670. Porter, R., Aspinall, S., 2013. Birds of the Middle East. Bloomsbury Publishing. Pu, B., Zhaxi, L., La, D., Sang, B., 2011. Study on behavior and feeding site selection of Tibetan Snowcock (Tetraogallus tibetanus) during the winter. Journal of Tibet University 26(1), 1-6. Qin, A., Liu, B., Guo, Q., Bussmann, R. W., Ma, F., Jian, Z., Xu, G., Pei, S., 2017. Maxent modeling for predicting impacts of climate change on the potential distribution of Thuja sutchuenensis Franch, an extremely endangered conifer from southwestern China. Global Ecology and Conservation 10(1), 139-146. R Development Core Team, 2014. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Radomski, T., Beamer, D., Babineau, A., Wilson, C., Pechmann, J., Kozak, K.H., 2022. Finding what you don’t know: Testing SDM methods for poorly known species. Diversity and Distributions 28(9), 1769-1780. Regmi, S., Sharma, H.P., 2023. Himalayan Snowcock (Tetraogallus himalayensis) in Dhorpatan Hunting Reserve, Nepal. Banko Janakari 33(1), 60-64. Remya, K., Ramachandran, A., Jayakumar, A.S., 2015. Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. using MaxEnt model in the Eastern Ghats, India. Ecological Engineering 82(1), 184-188. Sillero, N., Campos, J.C., Arenas-Castro, S., Barbosa, A.M., 2023. A curated list of R packages for ecological niche modelling. Ecological Modelling 476(1), 110242. Tucker, G.M., Heath, M.F., 1994. Birds in Europe: their conservation statusø Cambridge. UK: BirdLife International (BirdLife Conservation Series No. 30). Valavi, R., Guillera-Arroita, G., Lahoz-Monfort, J.J., Elith, J., 2022. Predictive performance of presence only species distribution models: a benchmark study with reproducible code. Ecological Monographs 92(1), p.e01486. Venter, O., Sanderson, E.W., Magrach, A., Allan, J.R., Beher, J., Jones, K.R., Possingham, H.P., Laurance, W.F., Wood, P., Fekete, B.M., Levy, M.A., 2016. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nature Communications 7(1), 12558. Wang, W., Ren, G., He, Y., Zhu, J., 2008. Habitat degradation and conservation status assessment of Gallinaceous birds in the Trans‐Himalayas, China. The Journal of Wildlife Management 72(6), 1335-1341. Yao, H., Davison, G., Wang, N., Ding, C., Wang, Y., 2017. Post-breeding habitat association and occurrence of the Snow Partridge (Lerwa lerwa) on the Qinghai-Tibetan Plateau, west central China. Avian Research 8(1), 1-14. Yao, H., Wang, P., Davison, G., Wang, Y., McGowan, P.J., Wang, N., Xu, J., 2021. How do Snow Partridge (Lerwa lerwa) and Tibetan Snowcock (Tetraogallus tibetanus) coexist in sympatry under high‐elevation conditions on the Qinghai–Tibetan Plateau?. Ecology and Evolution 11(24), 18331-18341. Yıldızbaş, M., 2022. Investigating the responses of alpine species Caspian Snowcock (Tetraogallus caspius gmelin, 1784), Caucasian grouse (Lyrurus mlokosiewiczi taczanowski, 1875) and caucasian snowcock (Tetraogallus caucasicus pallas, 1811) to climate change by using Ecological niche modelling. Master of Science, 53 p. Yousefi Qaleh Salimi, S., Gholamalifard, M., Ghasempouri, S.M. and Rahbarizadeh, A., 2024. Habitat Suitability Modeling of Wild Goat (Capra Aegagrus) and Caspian Snowcock (Tetraogallus Caspius) in the Central Northern Alborz Protected Area Based on the Multi-Criteria Evaluation Procedure (MCE). Environment and Interdisciplinary Development 8(82), 1-16. Zheng, G.M., 2016. Chinese pheasant. Beijing Science Press. Zheng, G.M., Zhang, Z.W., Ding, P., Ding, C.Q., Lu, X., Zhang, Y.Y., 2002. A Checklist on the Classification and Distribution of the Birds of the World. | ||
آمار تعداد مشاهده مقاله: 197 تعداد دریافت فایل اصل مقاله: 161 |