
تعداد نشریات | 163 |
تعداد شمارهها | 6,762 |
تعداد مقالات | 72,832 |
تعداد مشاهده مقاله | 131,717,203 |
تعداد دریافت فایل اصل مقاله | 103,469,497 |
Prediction of Compressive Strength of Geopolymer Fiber Reinforced Concrete Using Machine Learning | ||
Civil Engineering Infrastructures Journal | ||
دوره 58، شماره 1، شهریور 2025، صفحه 173-182 اصل مقاله (800.49 K) | ||
نوع مقاله: Research Papers | ||
شناسه دیجیتال (DOI): 10.22059/ceij.2024.364871.1956 | ||
نویسندگان | ||
Pramod Kumar1؛ Sanjay Sharma2؛ Bheem Pratap* 3 | ||
1Assistant Professor, Department of Civil Engineering, Mohan Babu University (SVEC), Tirupati, Andhra Pradesh, India. | ||
2Ph.D. Candidate, Department of Civil Engineering, National Institute of Technology Jamshedpur, Jharkhand, India. | ||
3Assistant Professor, Department of Civil Engineering, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India. | ||
چکیده | ||
Geopolymers represent a cutting-edge class of inorganic materials that provide a sustainable substitute for conventional cement and concrete. Through meticulous combinations and ratios of elements like Fly Ash (FA), silica fume, Ground Granulated Blast Slag (GGBS), alkaline solutions, aggregates, superplasticizers, and fibers, geopolymer concrete mixes are generated as part of the experimental program. The investigation concentrates on predicting the 28-day compressive strength, a pivotal parameter in assessing concrete performance. The dataset comprises 96 data points, and two advanced techniques, namely Support Vector Regression (SVR) and Artificial Neural Networks (ANN), are harnessed for this research. The ANN demonstrates an value of 0.992 on the training dataset, indicating its capacity to elucidate around 99.2% of the variability. On the other hand, SVR boasts an value of 0.995, signifying an ability to account for about 99.5% of the variance. When applied to the testing data, the ANN achieves an of 0.96, while SVR attains an of 0.99. This study suggests that SVR exhibits slightly superior performance in elucidating variance within the testing dataset. | ||
کلیدواژهها | ||
ANN؛ Fly Ash؛ GGBS؛ Soft Computing | ||
مراجع | ||
Al-Majidi, M.H., Lampropoulos, A. and Cundy, A.B. (2017). “Steel fibre reinforced geopolymer concrete with improved microstructure and enhanced fibre-matrix interfacial properties”, Construction and Building Materials, 139, 286-307, https://doi.org/10.1016/j.conbuildmat.2017.02.045.
Althoey, F., Zaid, O., Alsulamy, S., Martínez-García, R., de Prado-Gil, J. and Arbili, M.M. (2023). “Experimental study on the properties of ultra-high-strength geopolymer concrete with polypropylene fibers and nano-silica”, PLoS One, 18(4), e0282435, https://doi.org/10.1371/journal.pone.0282435.
Banthia, N. and Gupta, R. (2006). “Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete”, Cement and concrete Research, 36(7), 1263-1267, https://doi.org/10.1016/j.cemconres.2006.01.010.
Carloni, C., Antino T.D., Sneed, L.H. and Pellegrino, C. (2015). “Role of the matrix layers in the stress-transfer mechanism of frcm composites bonded to a concrete substrate”, Journal of Engineering Mechanics, 141(6), https://doi.org/10.1061/(ASCE)EM.1943-7889.0000883.
D’Antino, T., Carloni, C., Sneed, L.H. and Pellegrino, C. (2014). “Matrix-fiber bond behavior in pbo frcm composites: a fracture mechanics approach”, Engineering Fracture Mechanics, 117, 94-111, https://doi.org/10.1016/j.engfracmech.2014.01.011.
Farooq, M., Bhutta, A. and Banthia, N. (2019). “Tensile performance of eco-friendly ductile geopolymer composites incorporating different micro-fibers”, Cement and Concrete Composites, 103, 183-192, https://doi.org/10.1016/j.cemconcomp.2019.05.004.
Ghanbari, M., Hadian, A.M., Nourbakhsh, A.A. and Mackenzie, K.J.D. (2017). “Modelling and optimization of compressive strength and bulk density of metakaolin-based geopolymer using central composite design: A numerical and experimental study”, Ceramics International, 43(1), 324-335, Elsevier, https://doi.org/10.1016/j.ceramint.2016.09.159.
Huang, Y., Huo, Z., Ma, G., Zhang, L., Wang, F. and Zhang, J. (2023). “Multi-objective optimization of fly ash-slag based geopolymer considering strength, cost and co2 emission: A new framework based on tree-based ensemble models and nsga-II”, Journal of Building Engineering, 68, 106070, Elsevier Ltd, https://doi.org/10.1016/j.jobe.2023.106070.
Kaveh, A. and Khavaninzadeh, N. (2023). “Efficient training of two Ann’s using four meta-heuristic algorithms for predicting the FRP strength”, Structures, 52, 256-272, https://doi.org/10.1016/j.istruc.2023.03.178.
Kumar, P., Pratap, B., Sharma, S. and Kumar, I. (2023). “Compressive strength prediction of fly ash and blast furnace slag‑based geopolymer concrete using convolutional neural network”, Asian Journal of Civil Engineering, https://doi.org/10.1007/s42107-023-00861-5.
Jindal, A., RN, G., Kumar, P., Kumar, V. and Rana, D. (2023). “Rehabilitation prospects of concrete pavements with self-compacting concrete containing wollastonite micro fibre“, Civil Engineering Infrastructures Journal, 56(2), 221-233, https://doi.org/10.22059/ceij.2023.341456.1828.
Larena, A. and Pinto, G. (1993). “The effect of surface roughness and crystallinity on the light scattering of polyethylene tubular blown films”, Polymer Engineering and Science, 33(12), 742-747, https://doi.org/10.1002/pen.760331204.
Li, Y., J., Shen, Lin, H., Li, H., Lv, J., Feng, S. and Ci, J. (2022). “The data-driven research on bond strength between fly ash-based geopolymer concrete and reinforcing bars”, Construction and Building Materials, 357, (100), 129384, https://doi.org/10.1016/j.conbuildmat.2022.129384.
Mastali, M., Dalvand, A., Sattarifard, A.R., Abdollahnejad, Z. and Illikainen, M. (2018). “Characterization and optimization of hardened properties of self-consolidating concrete incorporating recycled steel, industrial steel, polypropylene and hybrid fibers”, Composites Part B: Engineering, 151, 186-200, https://doi.org/10.1016/j.compositesb.2018.06.021.
Mu, B., Meyer, C. and Shimanovich, S. (2002). “Improving the interface bond between fiber mesh and cementitious matrix”, Cement and Concrete Research, 32(5), 783-787, https://doi.org/10.1016/S0008-8846(02)00715-9.
Naghibzadeh, H., Saadat, M., Basirat, S. and Iranpour Mobarakeh, M. (2022). “Performance improved multi-objective optimization in applying low-impact development strategies to control urban runoff“, Civil Engineering Infrastructures Journal, 56(2), 257-276, https://ceij.ut.ac.ir/article88680.html.
Ochi, T., Okubo, S. and Fukui, K. (2007). “Development of recycled pet fiber and its application as concrete-reinforcing fiber”, Cement and Concrete Composites, 29(6), 448-455, https://doi.org/10.1016/j.cemconcomp.2007.02.002.
Pratap, B., Shubham, K., Mondal, S. and Hanumantha, B. (2023). “Exploring the potential of neural network in assessing mechanical properties of geopolymer concrete incorporating fly ash and phosphogypsum in pavement applications”, Asian Journal of Civil Engineering, 24, 3575-3589, https://doi.org/10.1007/s42107-023-00735-w.
Qaidi, S.M.A., Sulaiman Atrushi, D., Mohammed, A.S., Unis Ahmed, H., Faraj, R.H., Emad, W., Tayeh, B.A. and Mohammed Najm, H. (2022). “Ultra-high-performance geopolymer concrete: A review”, Construction and Building Materials, 346, 128495, https://doi.org/10.1016/j.conbuildmat.2022.128495.
Ranjbar, N., Mehrali, M., Behnia, A., Javadi Pordsari, A., Mehrali, M., Alengaram, U.J. and Jumaat, M.Z. (2016). “A comprehensive study of the polypropylene fiber reinforced fly ash based geopolymer”, PLoS One, (W. Batchelor, ed.), 11(1), e0147546, https://doi.org/10.1371/journal.pone.0147546.
Sahu, A., Kumar, S. and Shrivastav, A.K.L., Pratap B. (2023). “Machine learning approach to study the mechanical properties of recycled aggregate concrete using copper slag at elevated temperature”, Asian Journal of Civil Engineering, 25, 911-921, https://doi.org/10.1007/s42107-023-00821-z.
Shariati, M., Mafipour, M.S., Ghahremani, B., Azarhomayun, F., Ahmadi, M., Trung, N.T. and Shariati, A. (2022). “A novel hybrid extreme learning machine-grey wolf optimizer (elm-gwo) model to predict compressive strength of concrete with partial replacements for cement”, Engineering with Computers, 38(1), 757-779, https://doi.org/10.1007/s00366-020-01081-0.
Siddique, R., Khatib, J. and Kaur, I. (2008). “Use of recycled plastic in concrete: A review”, Waste management, 28(10), 1835-1852, https://doi.org/10.1016/j.wasman.2007.09.011.
Sukontasukkul, P., Pongsopha, P., Chindaprasirt, P. and Songpiriyakij, S. (2018). “Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer”, Construction and Building Materials, 161, 37-44, https://doi.org/10.1016/j.conbuildmat.2017.11.122.
Tayeh, B.A., Akeed, M.H., Qaidi, S. and Bakar, B.H.A. (2022). “Influence of microsilica and polypropylene fibers on the fresh and mechanical properties of ultra-high performance geopolymer concrete (uhp-gpc)”, Case Studies in Construction Materials, 17, e01367, https://doi.org/10.1016/j.cscm.2022.e01367.
Tayeh, B.A., Zeyad, A.M., Agwa, I.S. and Amin, M. (2021). “Effect of elevated temperatures on mechanical properties of lightweight geopolymer concrete”, Case Studies in Construction Materials, 15, https://doi.org/10.1016/j.cscm.2021.e00673.
Vadel, M., Khadija, B., Nawal, Z. and Mohamed, S. (2019). “Modelling compressive strength of moroccan fly ash - phosphogypsum geopolymer bricks”, SN Applied Sciences, 1(12), 1-9, https://doi.org/10.1007/s42452-019-1736-1.
Wang, R., Gao, X., Zhang, J. and Han, G. (2018). “Spatial distribution of steel fibers and air bubbles in uhpc cylinder determined by x-ray ct method”, Construction and Building Materials, 160, 39-47, https://doi.org/10.1016/j.conbuildmat.2017.11.030.
Wang, X.H., Jacobsen, S., He, J.Y., Zhang, Z.L., Lee, S.F. and Lein, H.L. (2009). “Application of nano indentation testing to study of the interfacial transition zone in steel fiber reinforced mortar”, Cement and Concrete Research, 39(8), 701-715, https://doi.org/10.1016/j.cemconres.2009.05.002.
Wong, L.S. (2022). “Durability performance of geopolymer concrete: a review”, Polymers, 14(5), 868, https://doi.org/10.3390/polym14050868.
Yin, J., D’Haese, C. and Nysten, B. (2015). “Surface electrical properties of stainless steel fibres: An afm-based study”, Applied Surface Science, 330, 65-73, https://doi.org/10.1016/j.apsusc.2014.12.188. | ||
آمار تعداد مشاهده مقاله: 337 تعداد دریافت فایل اصل مقاله: 359 |