![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,037 |
تعداد مشاهده مقاله | 125,519,918 |
تعداد دریافت فایل اصل مقاله | 98,779,229 |
Fabrication and characterization of nanochitin-reinforced carboxymethyl cellulose edible film | ||
Journal of Food and Bioprocess Engineering | ||
دوره 7، شماره 1، آبان 2024، صفحه 41-46 اصل مقاله (926.83 K) | ||
نوع مقاله: Original research | ||
شناسه دیجیتال (DOI): 10.22059/jfabe.2024.371473.1161 | ||
نویسندگان | ||
Narges Jannatiha1؛ Maryam Moslehishad* 2؛ Saeedeh Shojaee-Aliabadi3 | ||
1Department of Food Sciences and Technology, Agriculture Faculty, Ferdowsi University of Mashhad, Mashhad, Iran | ||
2Department of Food Science & Technology, Safadasht Branch, Islamic Azad University, Tehran, Iran | ||
3Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran | ||
چکیده | ||
Nanochitin (NC) and carboxymethyl cellulose (CMC) are biodegradable polymers that are prepared from aqua cultural and natural resources. NC at three concentrations (0.1, 0.5 and 1% w/w) was added to the CMC film using casting methods. The optimum result was obtained through the nanocomposite film with 1% NC in terms of water solubility (WS) (17%), moisture content (MC) (14%), and moisture absorption (MA) (16.28%). Water vapor permeability (WVP) of composite film is reduced by increasing concentration of NC. The lowest water vapor permeability value belongs to CMC/NC 1% with 0.30 g s-1 m-1 Pa-1 × 10-10. Moreover, tensile strength (TS) and elongation at break (EB) improved in CMC/NC film by increasing the NC content. By adding NC, the tensile strength of the nanocomposite was considerably enhanced from 4.98 to 24.59 MP. The differential scanning calorimetry (DSC) revealed that the glass transition temperature of NC (204.81 °C) was lower than CMC (206.31 °C). X-ray analysis confirmed the emersion of crystalline peaks in CMC/NC. However, high concentration (1%) of NC led to the aggregation of NC in CMC film. Antibacterial activity was obtained against five pathogen bacteria and the result showed an effective inhibition on E.coli and S. aureus. The inhibition zones for CMC/ 1% NC were 3.66 mm and 3.00 mm against E.coli and S. aureus respectively. In conclusion, the results suggested that the quality of the CMC-based films can be improved through the addition of NC. | ||
کلیدواژهها | ||
Nanochitin؛ Carboxymethyl cellulose؛ Biopolymer؛ Edible film | ||
مراجع | ||
Abdollahi, M., Alboofetileh, M., Rezaei, M., & Behrooz, R. (2013). Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/orinorganic nanofillers. Food Hydrocolloids, 32(2), 416-424. Azeredo, H. M., Mattoso, L. H. C., Avena‐Bustillos, R. J., Filho, G. C., Munford, M. L., Wood, D., & McHugh, T. H. (2010). Nanocellulose reinforced chitosan composite films as affected by nanofiller loading and plasticizer content. Journal of Food Science, 75(1), N1-N7. Jannatiha et al. JFBE 7(1): 41-46,2024 46 Andrés-Bello, A., Iborra-Bernad, C., García-Segovia, P., & Martínez-Monzó .(2013). Effect of Konjac Glucomannan (KGM) and Carboxymethylcellulose (CMC) on some Physico-Chemical and Mechanical Properties of Restructured Gilthead Sea Bream (Sparus aurata) Products. Food Bioprocess Technol, 6,133–145. Chaichi, M., Hashemi, M., Badii, F., & Mohammadi, A. (2017). Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydrate Polymers, 157, 167-175. Chang, P. R., Jian, R., Yu, J., & Ma, X. (2010). Starch-based composites reinforced with novel chitin nanoparticles. Carbohydrate Polymers, 80(2), 420-425. Chen, C., Xu, Z., Ma, Y., Liu, J., Zhang, Q., Tang, Z., Fu, K., Yang, F., & Xie, J. (2018). Properties, vapour-phase antimicrobial and antioxidant activities of active poly (vinyl alcohol) packaging films incorporated with clove oil. Food Control, 88, 105-112. Dashipour, A., Razavilar, V., Hosseini, H., Shojaee-Aliabadi, S., German, J. B., Ghanati, K., Khakpour, M., & Khaksar, R. (2015). Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil. International Journal of Biological Macromolecules, 72, 606-613. Deng, L., Li, X., Miao, K., Mao, X., Han, M., Li, D., Mu, Ch., Ge. L. (2020). Development of Disulfide Bond Crosslinked Gelatin/ε-Polylysine Active Edible Film with Antibacterial and Antioxidant Activities. Food and Bioprocess Technology, 21. Kaur, K., Sharma, S., Mir, Sh & Dar, B. N. (2021). Nanobiocomposite Films: a “Greener Alternate” for Food Packaging. Food and Bioprocess Technology ,14:1013–1027. de Moura, M. R., Aouada, F. A., Avena-Bustillos, R. J., McHugh, T. H., Krochta, J. M., & Mattoso, L. H. (2009). Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles. Journal of Food Engineering, 92(4), 448-453. Dehnad, D., Emam-Djomeh, Z., Mirzaei, H., Jafari, S.-M., & Dadashi, S. (2014). Optimizatin of physical and mechanical properties for chitosan–nanocellulose biocomposites. Carbohydrate Polymers, 105,222-228. Ifuku, S., Ikuta, A., Izawa, H., Morimoto, M., & Saimoto, H. (2014). Control of mechanical properties of chitin nanofiber film using glycerol without losing its characteristics. Carbohydrate Polymers, 101, 714-717. Ji, N., Liu, C., Zhang, S., Yu, J., Xiong, L., & Sun, Q. (2017). Effects of chitin nano-whiskers on the gelatinization and retrogradation of maize and potato starches. Food Chemistry, 214, 543-549. Khan, A., Khan, R. A., Salmieri, S., Le Tien, C., Riedl, B., Bouchard, J., Chauve, G., Tan, V., Kamal, M. R., & Lacroix, M. (2012). Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydrate Polymers, 90(4), 1601-1608. Li, M.-C., Wu, Q., Song, K., Cheng, H., Suzuki, S., & Lei, T. (2016). Chitin nanofibers as reinforcing and antimicrobial agents in carboxymethyl cellulose films: Influence of partial deacetylation. ACS Sustainable Chemistry & Engineering, 4(8), 4385-4395. Oun, A. A., & Rhim, J.-W. (2017). Preparation of multifunctional chitin nanowhiskers/ZnO-Ag NPs and their effect on the properties of carboxymethyl cellulose-based nanocomposite film. Carbohydrate Polymers, 169, 467-47. Panaitescu, D. M., Frone, A. N., Chiulan, I., Casarica, A., Nicolae, C. A., Ghiurea, M., Trusca, R., & Damian, C. M. (2016). Structural and morphological characterization of bacterial cellulose nanoreinforcements prepared by mechanical route. Materials & Design, 110, 790-801. Pérez, P., Ollé Resa, C., Gerschenson, L., & Jagus, R. (2021). Addition of Zein for the Improvement of Physicochemical Properties of Antimicrobial Tapioca Starch Edible Film. Food and Bioprocess Technology, 14,262–271. Qin, Y., Zhang, S., Yu, J., Yang, J., Xiong, L., & Sun, Q. (2016). Effects of chitin nano-whiskers on the antibacterial and physicochemical properties of maize starch films. Carbohydrate Polymers, 147, 372-378. Rubentheren, V., Ward, T. A., Chee, C. Y., & Tang, C. K. (2015). Processing and analysis of chitosan nanocomposites reinforced with chitin whiskers and tannic acid as a crosslinker. Carbohydrate Polymers, 115,379-387. Sahraee, S., Milani, J. M., Ghanbarzadeh, B., & Hamishehkar, H. (2017a). Effect of corn oil on physical, thermal, and antifungal properties of gelatin-based nanocomposite films containing nano chitin. LWT-Food Science and Technology, 76, 33-39. Sahraee, S., Milani, J. M., Ghanbarzadeh, B., & Hamishehkar, H. (2017b). Physicochemical and antifungal properties of bio-nanocomposite film based on gelatin-chitin nanoparticles. International Journal of Biological Macromolecules, 97, 373-381. Salaberria, A. M., Diaz, R. H., Labidi, J., & Fernandes, S. C. (2015). Role of chitin nanocrystals and nanofibers on physical, mechanical and functional properties in thermoplastic starch films. Food Hydrocolloids, 46, 93-102. Sahraee, S., Ghanbarzadeh, B., Milani, J., & Hamishehkar, H. (2017). Development of Gelatin Bionanocomposite Films Containing Chitin and ZnO Nanoparticles. Food Bioprocess Technol, 11. Salaberria, A. M., Diaz, R. H., Labidi, J., & Fernandes, S. C. (2015). Role of chitin nanocrystals and nanofibers on physical, mechanical and functional properties in thermoplastic starch films. Food Hydrocolloids, 46, 93-102. Sanuja, S., Agalya, A., & Umapathy, M J. (2015). Oil–chitosan bionanocomposite for food packaging application. International Journal of Biological Macromolecules, 74, 76-84. Savadekar, N., Karande, V., Vigneshwaran, N., Bharimalla, A., & Mhaske, S. (2012). Preparation of nano cellulose fibers and its application in kappa-carrageenan based film. International Journal of Biological Macromolecules, 51(5), 1008-1013. Shankar, S., Reddy, J. P., Rhim, J.-W., & Kim, H.-Y. (2015). Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydrate Polymers, 117, 468-475. Shojaee-Aliabadi, S., Hosseini, H., Mohammadifar, M. A., Mohammadi, A., Ghasemlou, M., Ojagh, S. M., Hosseini, S. M., & Khaksar, R. (2013). Characterization of antioxidant-antimicrobial κ- carrageenan films containing Satureja hortensis essential oil. International Journal of Biological Macromolecules, 52, 116- 124. | ||
آمار تعداد مشاهده مقاله: 188 تعداد دریافت فایل اصل مقاله: 102 |