تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,802 |
تعداد دریافت فایل اصل مقاله | 97,231,975 |
Mercuric oxide nanoparticles deferred germination and devastated root anatomy of maize | ||
Pollution | ||
مقاله 7، دوره 10، شماره 2، مرداد 2024، صفحه 723-735 اصل مقاله (2 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2024.369264.2172 | ||
نویسندگان | ||
Yasser Mahmoud Hassan* 1؛ Hamada AbdElgawad2؛ Ayman Hassan Zaki3؛ Ola Hammouda4؛ Salah-Eldin Ali Khodary1 | ||
1Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62521 Beni-Suef, Egypt. | ||
21- Department of Botany and Microbiology, Faculty of Science, Beni-Suef University. 2- Laboratory for Molecular Plant Physiology and Biotechnology, Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp 2020, Belgium | ||
3Faculty of postgraduate studies for advanced sciences, Beni-Suef University, 62521 Beni-Suef, Egypt | ||
4Department of Botany and Microbiology, Faculty of Science, Beni-Suef University, 62521 Beni-Suef, Egypt | ||
چکیده | ||
Given the widespread use of mercuric oxide NPs (HgO-NPs), they have become increasingly prevalent in the soil ecosystem. Consequently, it is important to promptly evaluate their phytotoxic impacts. To this end, we have investigated the effects of HgO-NPs (0-200 mg/L) on germination and early growth of maize. Moreover, we have evaluated the interactive influences of HgO-NPs toxicity on the elongation and anatomical structures of primary roots. Relative to control, HgO-NPs decreased the germination percentage, speed and rate, but increased the mean germination time, mean daily germination time and time to 50% germination. The length and biomass of root and shoot and seedling vigour indices have significantly deteriorated. The inhibitory impacts of HgO-NPs on growth parameters were more pronounced in root than in shoot. The response of root was concomitant with dose and time-dependent inhibitions in root elongation and significant drops in root diameter, stele size, cortex size, and cortical cells count. The consequences of HgO-NPs were dose-dependent. For instance, the decrease of maize germination, growth, root elongation, and anatomy were more evident at 200 mg/L HgO-NPs compared to other doses and control. Overall, this study suggests that the presence of HgO-NPs leads to phytotoxic effects on germination and growth of young seedlings, highlighting a noteworthy challenge and environmental concern. | ||
کلیدواژهها | ||
Mercuric oxide NPs؛ Phytotoxicity؛ Germination؛ Root elongation؛ Root anatomy | ||
مراجع | ||
AbdElgawad, H., Hassan, Y. M., Alotaibi, M. O., Mohammed, A. E., & Saleh, A. M. (2020). C3 and C4 plant systems respond differently to the concurrent challenges of mercuric oxide nanoparticles and future climate CO2. Science of The Total Environment, 749, 142356. DOI: 10.1016/j.scitotenv.2020.142356. Ahmad, A., Hashmi, S. S., Palma, J. M., & Corpas, F. J. (2022). Influence of metallic, metallic oxide, and organic nanoparticles on plant physiology. Chemosphere, 290, 133329. DOI: 10.1016/j.chemosphere.2021.133329. Ahmed, B., Rizvi, A., Syed, A., Rajput, V. D., Elgorban, A. M., Al-Rejaie, S. S., Minkina, T., Khan, M. S., & Lee, J. (2022). Understanding the phytotoxic impact of Al3+, nano-size, and bulk Al2O3 on growth and physiology of maize (Zea mays L.) in aqueous and soil media. Chemosphere, 300, 134555. DOI: 10.1016/j.chemosphere.2022.134555. Antisari, L. V., Carbone, S., Gatti, A., Vianello, G., & Nannipieri, P. (2015). Uptake and translocation of metals and nutrients in tomato grown in soil polluted with metal oxide (CeO2, Fe3O4, SnO2, TiO2) or metallic (Ag, Co, Ni) engineered nanoparticles. Environmental Science and Pollution Research, 22, 1841-1853. DOI: 10.1007/s11356-014-3509-0. AOSA, I. (1983). Seed vigor testing handbook. Association of Official Seed Analysts. Contribution, 32, 88. Asadi-Kavan, Z., Khavari-Nejad, R. A., Iranbakhsh, A., & Najafi, F. (2020). Cooperative effects of iron oxide nanoparticle (α-Fe2O3) and citrate on germination and oxidative system of evening primrose (Oenthera biennis L.). Journal of Plant Interactions, 15(1), 166–179. DOI:10.1080/17429145.2020.1774671. Association, I. S. T. (1999). International rules for seed testing. Rules 1999. (Issue Suppl). Bezini, E., Abdelguerfi, A., Nedjimi, B., Touati, M., Adli, B., & Yabrir, B. (2019). Effect of some heavy metals on seed germination of Medicago arborea L.(Fabaceae). Agriculturae Conspectus Scientificus, 84(4), 357-364. Chen, L., Wang, C., Li, H., Qu, X., Yang, S. T., & Chang, X. L. (2017). Bioaccumulation and toxicity of 13C-skeleton labeled graphene oxide in wheat. Environmental science & technology, 51(17):10146–10153. DOI: 10.1021/acs.est.7b00822. Deng, B., Yang, K., Zhang, Y., & Li, Z. (2016). Can heavy metal pollution defend seed germination against heat stress? Effect of heavy metals (Cu2+, Cd2+ and Hg2+) on maize seed germination under high temperature. Environmental Pollution, 216, 46–52. DOI: 10.1016/j.envpol.2016.05.050. Duncan, D. B. (1955). Multiple range and multiple F test. Biometric, 11(1):1-42. DOI:10.2307/3001478. EPA, U. (1996). US environmental protection agency: ecological effects test guidelines (OPPTS 850. 4200): seed/germination/root elongation toxicity test. US Environmental Protection Agency, Washington, DC. Esechie, H. A. (1994). Interaction of salinity and temperature on the germination of sorghum. Journal of Agronomy and Crop science, 172 (3): 194-199. DOI: 10.1111/j.1439-037X.1994.tb00166.x. Faraji, J., & Sepehri, A. (2019). Ameliorative effects of TiO2 nanoparticles and sodium nitroprusside on seed germination and seedling growth of wheat under PEG-stimulated drought stress. Journal of Seed Science, 41, 309-317. DOI: 10.1590/2317-1545v41n3213139. Gao, M., Chang, J., Wang, Z., Zhang, H., & Wang, T. (2023). Advances in transport and toxicity of nanoparticles in plants. Journal of Nanobiotechnology, 21(1): 75. DOI: 10.1186/s12951-023-01830-5. Hao, Y., Ma, C., Zhang, Z., Song, Y., Cao, W., Guo, J., Zhou, G., Rui, Y., Liu, L., & Xing, B. (2018). Carbon nanomaterials alter plant physiology and soil bacterial community composition in a rice-soil-bacterial ecosystem. Environmental Pollution, 232, 123–136. DOI: 10.1016/j.envpol.2017.09.024. Ibrahim, A. S., Ali, G. A. M., Hassanein, A., Attia, A. M., & Marzouk, E. R. (2022). Toxicity and uptake of CuO nanoparticles: evaluation of an emerging nanofertilizer on wheat (Triticum aestivum L.) plant. Sustainability, 14(9), 4914. DOI: 10.3390/su14094914. Idrees, S., Shabir, S., Ilyas, N., Batool, N., & Kanwal, S. (2015). Assessment of cadmium on wheat (Triticum aestivum L.) in hydroponics medium. Agrociencia, 49(8): 917–929. Jahani, S., Saadatmand, S., Mahmoodzadeh, H., & Khavari-Nejad, R. A. (2019). Effect of foliar application of cerium oxide nanoparticles on growth, photosynthetic pigments, electrolyte leakage, compatible osmolytes and antioxidant enzymes activities of Calendula officinalis L. Biologia, 74, 1063–1075. DOI: 10.2478/s11756-019-00239-6. Jones, K. W., & Sanders, D. C. (1987). The influence of soaking pepper seed in water or potassium salt solutions on germination at three temperatures. Journal of Seed Technology, 11(1): 97-102. DOI: 10.2307/23432941. Karahara, I., Ikeda, A., Kondo, T., & Uetake, Y. (2004). Development of the Casparian strip in primary roots of maize under salt stress. Planta, 219 (1): 41–47. DOI: 10.1007/s00425-004-1208-7. Karunakaran, G., Suriyaprabha, R., Rajendran, V., & Kannan, N. (2016). Influence of ZrO2, SiO2, Al2O3 and TiO2 nanoparticles on maize seed germination under different growth conditions. IET nanobiotechnology, 10(4): 171–177. DOI: 10.1049/iet-nbt.2015.0007. Lima, F. R. D., Martins, G. C., Silva, A. O., Vasques, I. C. F., Engelhardt, M. M., Cândido, G. S., Pereira, P., Reis, R., Carvalho, G. S., & Windmöller, C. C. (2019). Critical mercury concentration in tropical soils: impact on plants and soil biological attributes. Science of the Total Environment, 666, 472–479. DOI: 10.1016/j.scitotenv.2019.02.216. Liu, W., Zeb, A., Lian, J., Wu, J., Xiong, H., Tang, J., & Zheng, S. (2020). Interactions of metal-based and metal-oxide-based nanoparticles (MBNPs and MONPs) with crop plants: A critical review of research progress and prospects. Environmental Reviews, 28(1): 294–310. DOI: 10.1139/er-2019-0085. Matthews, S., & Khajeh-Hosseini, M. (2007). Length of the lag period of germination and metabolic repair explain vigour differences in seed lots of maize (Zea mays). Seed Science and Technology, 35(1): 200–212. DOI: 10.15258/sst.2007.35.1.18. Mirosavljević, M., Čanak, P., Ćirić, M., Nastasić, A., Đukić, D., & Rajković, M. (2013). Maize germination parameters and early seedlings growth under different levels of salt stress. Ratarstvo i Povrtarstvo, 50(1): 49–53. DOI:10.5937/RATPOV50-3042. Nowack, B., & Bucheli, T. D. (2007). Occurrence, behavior and effects of nanoparticles in the environment. Environmental pollution, 150(1): 5-22. DOI:10.1016/j.envpol.2007.06.006. Pandey, A. K., Zorić, L., Sun, T., Karanović, D., Fang, P., Borišev, M., Wu, X., Luković, J., & Xu, P. (2022). The anatomical basis of heavy metal responses in legumes and their impact on plant–rhizosphere interactions. Plants, 11(19): 2554. DOI: 10.3390/plants11192554. Peng, C., Tong, H., Shen, C., Sun, L., Yuan, P., He, M., & Shi, J. (2020). Bioavailability and translocation of metal oxide nanoparticles in the soil-rice plant system. Science of the Total Environment, 713, 136662. DOI: 10.1016/j.scitotenv.2020.136662. Sagar, A., Tajkia, J., Haque, M., Fakir, M., & Hossain, A. (2018). Screening of sorghum genotypes for salt-tolerance based on seed germination and seedling stage. Fundamental and Applied Agriculture, 4(1): 735–743. DOI: 10.5455/faa.18483. Saleh, A. M., Hassan, Y. M., Habeeb, T. H., Alkhalaf, A. A., Hozzein, W. N., Selim, S., & AbdElgawad, H. (2021). Interactive effects of mercuric oxide nanoparticles and future climate CO2 on maize plant. Journal of Hazardous Materials, 401, 123849. DOI: 10.1016/j.jhazmat.2020.123849. Scott, S. J., Jones, R. A., & Williams, Wa. (1984). Review of data analysis methods for seed germination1. Crop science, 24(6):1192–1199. DOI:10.2135/cropsci1984.0011183X002400060043x Seddighinia, F. S., Iranbakhsh, A., Oraghi Ardebili, Z., Nejad Satari, T., & Soleimanpour, S. (2020). Seed priming with cold plasma and multi-walled carbon nanotubes modified growth, tissue differentiation, anatomy, and yield in bitter melon (Momordica charantia). Journal of Plant Growth Regulation, 39, 87–98. DOI:10.1007/s00344-019-09965-2. Shah, T. M., Imran, M., Atta, B. M., Ashraf, M. Y., Hameed, A., Waqar, I., Shafiq, M., Hussain, K., Naveed, M., & Aslam, M. (2020). Selection and screening of drought tolerant high yielding chickpea genotypes based on physio-biochemical indices and multi-environmental yield trials. BMC plant biology, 20, 1–16. DOI:10.1186/s12870-020-02381-9. Shao, H.-B., Chu, L.-Y., Jaleel, C. A., & Zhao, C.-X. (2008). Water-deficit stress-induced anatomical changes in higher plants. Comptes rendus biologies, 331(3): 215–225. DOI: 10.1016/j.crvi.2008.01.002. Tripathi, D. K., Singh, S., Singh, S., Pandey, R., Singh, V. P., Sharma, N. C., Prasad, S. M., Dubey, N. K., & Chauhan, D. K. (2017). An overview on manufactured nanoparticles in plants: uptake, translocation, accumulation and phytotoxicity. Plant physiology and biochemistry, 110, 2–12. DOI: 10.1016/j.plaphy.2016.07.030. Ullah, H., Li, X., Peng, L., Cai, Y., & Mielke, H. W. (2020). In vivo phytotoxicity, uptake, and translocation of PbS nanoparticles in maize (Zea mays L.) plants. Science of the Total Environment, 737, 139558. DOI: 10.1016/j.scitotenv.2020.139558. Vashisth, A., & Nagarajan, S. (2010). Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of plant physiology, 167(2), 149–156. DOI: 10.1016/j.jplph.2009.08.011. Yang, S., Yin, R., Wang, C., Yang, Y., & Wang, J. (2023). Phytotoxicity of zinc oxide nanoparticles and multi-walled carbon nanotubes, alone or in combination, on Arabidopsis thaliana and their mutual effects on oxidative homeostasis. PLoS One, 18(2): e0281756. DOI: 10.1371/journal.pone.0281756. Yanık, F., & Vardar, F. (2015). Toxic effects of aluminum oxide (Al2O3) nanoparticles on root growth and development in Triticum aestivum. Water Air and Soil Pollution, 226(9):1–13. DOI: 10.1007/s11270-015-2566-4. Zhao, S., Wang, W., Chen, X., Gao, Y., Wu, X., Ding, M., & Duo, L. (2023). Graphene oxide affected root growth, anatomy, and nutrient uptake in alfalfa. Ecotoxicology & Environmental Safety, 250, 114483. DOI: 10.1016/j.ecoenv.2022.114483. Zhao, X., Zhang, W., He, Y., Wang, L., Li, W., Yang, L., & Xing, G. (2021). Phytotoxicity of Y2O3 nanoparticles and Y3+ ions on rice seedlings under hydroponic culture. Chemosphere, 263, 127943. DOI: 10.1016/j.chemosphere.2020.127943. | ||
آمار تعداد مشاهده مقاله: 172 تعداد دریافت فایل اصل مقاله: 192 |