- Abdulai, P. J., & Chung, E. S. (2019). Uncertainty assessment in drought severities for the Cheongmicheon watershed using multiple GCMs and the reliability ensemble averaging method. Sustainability (Switzerland), 11(16). https://doi.org/10.3390/su11164283
- Akstinas, V., Jakimavičius, D., Meilutyte-Lukauskiene, D., Kriaučiūniene, J., & Šarauskiene, D. (2020). Uncertainty of annual runoff projections in Lithuanian rivers under a future climate. Hydrology Research, 51(2), 257-271. https://doi.org/10.2166/nh.2019.004
- Baniasadi, A., Mazidi, A., Mozaffari, Gh. A., & Omidvar, K. (2023). Climate Change and its Effect on Agricultural Climate Indices for Pistachio Trees in Kerman Province : A case study of Rafsanjan stations. The Journal of Geographical Research on Desert Areas, 11(1), 179-191. (In Persian)
- Buytaert, W., Vuille, M., Dewulf, A., Urrutia, R., Karmalkar, A., & Célleri, R. (2010). Uncertainties in climate change projections and regional downscaling in the tropical Andes: Implications for water resources management. Hydrology and Earth System Sciences, 14(7), 1247-1258. https://doi.org/10.5194/hess-14-1247-2010
- Chen, J., Brissette, F. P., Chaumont, D., & Braun, M. (2013). Finding appropriate bias correction methods in downscaling precipitation for hydrologic impact studies over North America. Water Resources Research, 49(7), 4187-4205. https://doi.org/10.1002/wrcr.20331
- Cook, L. M., Anderson, C. J., & Samaras, C. (2017). Framework for Incorporating Downscaled Climate Output into Existing Engineering Methods: Application to Precipitation Frequency Curves. Journal of Infrastructure Systems, 23(4), 1-28. https://doi.org/10.1061/(asce)is.1943-555x.0000382
- Das, J., Poonia, V., Jha, S., & Goyal, M. K. (2020). Understanding the climate change impact on crop yield over Eastern Himalayan Region: ascertaining GCM and scenario uncertainty. Theoretical and Applied Climatology, 142(1-2), 467-482. https://doi.org/10.1007/s00704-020-03332-y
- Diro, G. T., Rauscher, S. A., Giorgi, F., & Tompkins, A. M. (2012). Sensitivity of seasonal climate and diurnal precipitation over Central America to land and sea surface schemes in RegCM4. Climate Research, 52(1), 31-48. https://doi.org/10.3354/cr01049
- Ebrahimi Louyeh, A. (2009). Consequences of Groundwater Over-Exploitation (Case Study: Rafsanjan Plain). Iran-Water Resources Research, 4(3), 70-73. (In Persian)
- El Asri, H., Larabi, A., & Faouzi, M. (2019). Climate change projections in the Ghis-Nekkor region of Morocco and potential impact on groundwater recharge. Theoretical and Applied Climatology, 138(1-2), 713-727. https://doi.org/10.1007/s00704-019-02834-8
- Enayati, M., Bozorg-Haddad, O., Bazrafshan, J., Hejabi, S., & Chu, X. (2021). Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. Journal of Water and Climate Change, 12(2), 401-419. https://doi.org/10.2166/wcc.2020.261
- Iran Ministery of Energy. (2016). extension Report on the Restricted Studey Area in Rafsanjan (Area Code 4902). (In Persian)
- Giorgi, F., & Mearns, L. O. (2002). Calculation of Average, Uncertainty Range, and Reliability of Regional Climate Changes from AOGCM Simulations via the “Reliability Ensemble Averaging” (REA) Method. Journal of Climate, 15(10), 1141-1158. https://doi.org/10.1175/1520-0442(2002)015<1141:COAURA>2.0.CO;2
- Gudmundsson, L., Bremnes, J. B., Haugen, J. E., & Engen-Skaugen, T. (2012). Technical Note: Downscaling RCM precipitation to the station scale using statistical transformations – A comparison of methods. Hydrology and Earth System Sciences, 16(9), 3383-3390. https://doi.org/10.5194/hess-16-3383-2012
- Hamed, M. M., Nashwan, M. S., Shahid, S., Ismail, T., Bin, Wang, X., Jun, Dewan, A., & Asaduzzaman, M. (2022). Inconsistency in historical simulations and future projections of temperature and rainfall: A comparison of CMIP5 and CMIP6 models over Southeast Asia. Atmospheric Research, 265, 1-38. https://doi.org/10.1016/j.atmosres.2021.105927
- Hong, J., Javan, K., Shin, Y., & Park, J. S. (2021). Future projections and uncertainty assessment of precipitation extremes in iran from the cmip6 ensemble. Atmosphere, 12(8), 1-16. https://doi.org/10.3390/ATMOS12081052
- Hosseinzadehtalaei, P., Tabari, H., & Willems, P. (2017). Uncertainty assessment for climate change impact on intense precipitation: how many model runs do we need? International Journal of Climatology, 37(April), 1105-1117. https://doi.org/10.1002/joc.5069
- IPCC. (2014). Climate Change 2014 Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Retrieved from https://doi.org/10013/epic.45156
- IPCC. (2018). Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change. Retrieved from World Meteorological Organization, website: https://www.ipcc.ch/sr15/
- Jung, I. W., Chang, H., & Moradkhani, H. (2011). Quantifying uncertainty in urban flooding analysis considering hydro-climatic projection and urban development effects. Hydrology and Earth System Sciences, 15(2), 617-633. https://doi.org/10.5194/hess-15-617-2011
- Karamouz, M., Semsaryazdi, M. S., Ahmadi, B., & Ahmadi, A. (2010). Climate Change Impacts on Crop Water Requirements : A Case Study Climate Change Impacts on Crop Water Requirements: A Case Study. In 1st IWA Malaysia Young Water Professionals Conference, International Water Association, 1-11. (In Persian)
- Kudo, R., Yoshida, T., & Masumoto, T. (2017). Uncertainty analysis of impacts of climate change on snow processes: Case study of interactions of GCM uncertainty and an impact model. Journal of Hydrology, 548, 196-207. https://doi.org/10.1016/j.jhydrol.2017.03.007
- Lafon, T., Dadson, S., Buys, G., & Prudhomme, C. (2013). Bias correction of daily precipitation simulated by a regional climate model: A comparison of methods. International Journal of Climatology, 33(6), 1367-1381. https://doi.org/10.1002/joc.3518
- Leander, R., & Buishand, T. A. (2007). Resampling of regional climate model output for the simulation of extreme river flows. Journal of Hydrology, 332(3-4), 487-496. https://doi.org/10.1016/j.jhydrol.2006.08.006
- Liepert, B. G., & Previdi, M. (2012). Inter-model variability and biases of the global water cycle in CMIP3 coupled climate models. Environmental Research Letters, 7(1). https://doi.org/10.1088/1748-9326/7/1/014006
- Luo, M., Liu, T., Meng, F., Duan, Y., Frankl, A., Bao, A., & De Maeyer, P. (2018). Comparing bias correction methods used in downscaling precipitation and temperature from regional climate models: A case study from the Kaidu River Basin in Western China. Water (Switzerland), 10(8). https://doi.org/10.3390/w10081046
- Mair, L., Jönsson, M., Räty, M., Bärring, L., Strandberg, G., Lämås, T., & Snäll, T. (2018). Land use changes could modify future negative effects of climate change on old-growth forest indicator species. Diversity and Distributions, 24(10), 1416-1425. https://doi.org/10.1111/ddi.12771
- Mandal, S., & Simonovic, S. P. (2017). Quantification of uncertainty in the assessment of future streamflow under changing climate conditions. Hydrological Processes, 31(11), 2076-2094. https://doi.org/10.1002/hyp.11174
- Mendez, M., Maathuis, B., Hein-Griggs, D., & Alvarado-Gamboa, L. F. (2020). Performance evaluation of bias correction methods for climate change monthly precipitation projections over Costa Rica. Water (Switzerland), 12(2). https://doi.org/10.3390/w12020482
- Pardo-Igúzquiza, E., Collados-Lara, A. J., & Pulido-Velazquez, D. (2019). Potential future impact of climate change on recharge in the Sierra de las Nieves (southern Spain) high-relief karst aquifer using regional climate models and statistical corrections. Environmental Earth Sciences, 78(20), 1-12. https://doi.org/10.1007/s12665-019-8594-4
- Piani, C., Weedon, G. P., Best, M., Gomes, S. M., Viterbo, P., Hagemann, S., & Haerter, J. O. (2010). Statistical bias correction of global simulated daily precipitation and temperature for the application of hydrological models. Journal of Hydrology, 395(3-4), 199-215. https://doi.org/10.1016/j.jhydrol.2010.10.024
- Prudhomme, C., & Davies, H. (2009). Assessing uncertainties in climate change impact analyses on the river flow regimes in the UK. Part 2: Future climate. Climatic Change, 93(1-2), 197-222. https://doi.org/10.1007/s10584-008-9461-6
- Räty, O., Räisänen, J., & Ylhäisi, J. S. (2014). Evaluation of delta change and bias correction methods for future daily precipitation: Intermodel cross-validation using ENSEMBLES simulations. Climate Dynamics, 42(9-10), 2287-2303. https://doi.org/10.1007/s00382-014-2130-8
- Reshmidevi, T. V., Nagesh Kumar, D., Mehrotra, R., & Sharma, A. (2018). Estimation of the climate change impact on a catchment water balance using an ensemble of GCMs. Journal of Hydrology, 556, 1192-1204. https://doi.org/10.1016/j.jhydrol.2017.02.016
- Sharma, T., Vittal, H., Chhabra, S., Salvi, K., Ghosh, S., & Karmakar, S. (2018). Understanding the cascade of GCM and downscaling uncertainties in hydro-climatic projections over India. International Journal of Climatology, 38(December 2017), e178-e190. https://doi.org/10.1002/joc.5361
- Shen, M., Chen, J., Zhuan, M., Chen, H., Xu, C. Y., & Xiong, L. (2018). Estimating uncertainty and its temporal variation related to global climate models in quantifying climate change impacts on hydrology. Journal of Hydrology, 556, 10–24. https://doi.org/10.1016/j.jhydrol.2017.11.004
- Shishehgaran, N. N., Babaeian, F., & Mianabadi, H. (2024). Comparison of CMIP6 Climate Models and Quantile Mapping Bias Correction Methods in the Simulation of Historical Precipitation. Iranian Journal of Soil and Water Research, 54(12), 1843-1862. https://doi.org/10.22059/IJSWR.2023.362445.669538. (In Persian)
- Sillmann, J., Kharin, V. V., Zwiers, F. W., Zhang, X., & Bronaugh, D. (2013). Climate extremes indices in the CMIP5 multimodel ensemble: Part 2. Future climate projections. Journal of Geophysical Research Atmospheres, 118(6), 2473–2493. https://doi.org/10.1002/jgrd.50188
- Song, Y. H., Chung, E. S., & Shiru, M. S. (2020). Uncertainty analysis of monthly precipitation in GCMs using multiple bias correction methods under different RCPs. Sustainability (Switzerland), 12(18). https://doi.org/10.3390/su12187508
- Tanveer, M. E., Lee, M. H., & Bae, D. H. (2016). Uncertainty and Reliability Analysis of CMIP5 Climate Projections in South Korea Using REA Method. Procedia Engineering, 154, 650-655. https://doi.org/10.1016/j.proeng.2016.07.565
- Tebaldi, C., Smith, R. L., Nychka, D., & Mearns, L. O. (2005). Quantifying uncertainty in projections of regional climate change: A Bayesian approach to the analysis of multimodel ensembles. Journal of Climate, 18(10), 1524-1540. https://doi.org/10.1175/JCLI3363.1
- Teutschbein, C., & Seibert, J. (2010). Regional climate models for hydrological impact studies at the catchment scale: A review of recent modeling strategies. Geography Compass, 4(7), 834-860. https://doi.org/10.1111/j.1749-8198.2010.00357.x
- Tong, Y., Gao, X., Han, Z., Xu, Y., Xu, Y., & Giorgi, F. (2021). Bias correction of temperature and precipitation over China for RCM simulations using the QM and QDM methods. Climate Dynamics, 57(5-6), 1425-1443. https://doi.org/10.1007/s00382-020-05447-4
- Vigna, I., Bigi, V., Pezzoli, A., & Besana, A. (2020). Comparison and bias-correction of satellite-derived precipitation datasets at local level in northern Kenya. Sustainability (Switzerland), 12(7). https://doi.org/10.3390/su12072896
- Wang, H. M., Chen, J., Xu, C. Y., Zhang, J., & Chen, H. (2020). A Framework to Quantify the Uncertainty Contribution of GCMs Over Multiple Sources in Hydrological Impacts of Climate Change. Earth’s Future, 8(8). https://doi.org/10.1029/2020EF001602
- Wang, J., Wang, Y., Feng, J., Chen, C., Chen, J., Long, T., Li, J., Zang, R., & Li, J. (2019). Differential responses to climate and land-use changes in threatened Chinese Taxus species. Forests, 10(9). https://doi.org/10.3390/f10090766
- Watanabe, S., Kanae, S., Seto, S., Yeh, P. J. F., Hirabayashi, Y., & Oki, T. (2012). Intercomparison of bias-correction methods for monthly temperature and precipitation simulated by multiple climate models. Journal of Geophysical Research Atmospheres, 117(23), 1-13. https://doi.org/10.1029/2012JD018192
- Woldemeskel, F. M., Sharma, A., Sivakumar, B., & Mehrotra, R. (2016). Quantification of precipitation and temperature uncertainties simulated by CMIP3 and CMIP5 models. Journal of Geophysical Research: Atmospheres, 121(1), 3-17. https://doi.org/10.1002/2015JD023719
- Wootten, A., Terando, A., Reich, B. J., Boyles, R. P., & Semazzi, F. (2017). Characterizing sources of uncertainty from global climate models and downscaling techniques. Journal of Applied Meteorology and Climatology, 56(12), 3245-3262. https://doi.org/10.1175/JAMC-D-17-0087.1
- Yazdandoost, F., Moradian, S., Izadi, A., & Aghakouchak, A. (2021). Evaluation of CMIP6 precipitation simulations across different climatic zones: Uncertainty and model intercomparison. Atmospheric Research, 250(November), 105369. https://doi.org/10.1016/j.atmosres.2020.105369
- Zarrin, A., & Dadashi-Roudbari, A. (2021). Projection of future extreme precipitation in Iran based on CMIP6 multi-model ensemble. Theoretical and Applied Climatology, 144(1-2), 643-660. https://doi.org/10.1007/s00704-021-03568-2
- Zeraatkar, H., & Golkar, E. (2018). Water Consumption in the Study Area of Rafsanjan Plain from 1951 to Present. (In Persian)
- Zhao, L., Xu, J., Powell, A. M., & Jiang, Z. (2015). Uncertainties of the global-to-regional temperature and precipitation simulations in CMIP5 models for past and future 100 years. Theoretical and Applied Climatology, 122(1-2), 259-270. https://doi.org/10.1007/s00704-014-1293-x
|