
تعداد نشریات | 163 |
تعداد شمارهها | 6,826 |
تعداد مقالات | 73,627 |
تعداد مشاهده مقاله | 134,966,091 |
تعداد دریافت فایل اصل مقاله | 105,319,836 |
Neuroprotective Effect of Allogeneic Biomaterial on Rat Neocortex After Its Intramuscular Injection | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 4، دوره 19، شماره 1، فروردین 2025، صفحه 31-40 اصل مقاله (2.73 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.1.1005479 | ||
نویسندگان | ||
Anna Ivanova Lebedeva1؛ Evgeny Musinovich Gareev1؛ Lyalya Akhiyarovna Musina1؛ Alexey Viktorovich Prusakov2؛ Anatoliy Viktorovich Yashin2؛ Vladimir Sergeevich Ponamarev* 2 | ||
1Federal State Budgetary Educational Institution of Higher Education, Bashkir State Medical University, Ministry of Health of the Russian Federation, (All-Russian Center for Eye and Plastic Surgery), Ufa, Russia. | ||
2Federal State Budgetary Educational Institution of Higher Education, Saint Petersburg State University of Veterinary Medicine, Saint Petersburg, Russia. | ||
چکیده | ||
Background: Forced physical activity violates all organ and system interactions. Allogeneic biomaterial has been used for many years for regeneration, but its remote exposure has not been studied. Objectives: The aim of this research is the morphological study of experimental animals’ precentral gyrus neocortex under forced physical activity and after intramuscular injection of allogeneic biomaterial. Methods: Male Wistar rats were used for the experiment. The Porsolt test or despair test was used for 30 days. In the main group (n=10), after 30 swimming sessions, allogeneic biomaterial (BMA) was injected intramuscularly. In the control group (n=10), the animals were injected with saline in the same volume. Then, 5 and 21 days after the injections, a tolerance load test was performed, after which the animals were taken out of the experiment by insufflation of a lethal dose of chloroform vapors. Their brains were removed, and morphological studies were performed. Results: In the experimental group, 5 days after the BMA injection, the median level of the multiplicity of the tolerant load was significantly higher than that in the control group and remained so in the long term. The neocortex of the control group animals was characterized by the development of pathomorphological changes. After 21 days, these signs persisted. No sign of nervous tissue edema was detected in the early period after the BMA injection. A clear architectonics of the neocortex neurocyte layers were preserved. Conclusion: Allogeneic biomaterial has a positive systemic effect on the organism. Also, neuroprotective and immunomodulating effects have been recorded. | ||
کلیدواژهها | ||
Allogeneic biomaterial؛ Cerebral cortex؛ Forced swimming؛ Neuroprotection؛ Rats | ||
اصل مقاله | ||
Introduction
In the main group (n=10), after all 30 training sessions, a dispersed allogeneic biomaterial (BMA) suspension was injected intramuscularly. One vial (10 mg) was diluted in 5 mL of saline for a 0.2% concentration. A total of 8 intramuscular single injections were made into the muscles of the thoracic limbs, including the shoulder biceps (m. biceps brachii), the superficial muscles of the forearm flexors, the ulnar and radial flexors of the wrist (m. flexor carpi ulnaris, m. flexor carpi radialis), and the pelvic limbs (gastrocnemius (m. triceps surae), and quadriceps femoris (m. quadriceps femoris). Then, 0.5 mL of BMA suspension was injected (4 mL). The dose of BMA was chosen arbitrarily. As BMA dispersed form, the alloplant biomaterial was used with a particle size of 50–80 μm. The alloplant biomaterial was developed at the All-Russian Center for Eye and Plastic Surgery, Ministry of Health of the Russian Federation, Ufa. The biomaterial is manufactured following the technical specifications 42-2-537-87, certified and approved for use in clinical practice by order of the Ministry of Health of the USSR No. 87 901-87 of July 22, 1987. For the present study, BMA was made from the extracellular matrix of rat tendons. In the control group (n=10), the animals were injected with physiological saline in similar zones and at the same volume.
Aziz Anah, S., & Aziz Anah, S. (2023). New Recording of Toxoplasma gondii in Wild Tortoise Testudo graeca using Nested PCR Method. Archives of Razi Institute, 78(3), 1029–1034. [PMID]
Baryshev, V. A., Popova, O. S., & Ponamarev, V. S. (2022). New methods for detoxification of heavy metals and mycotoxins in dairy cows. Online Journal of Animal and Feed Research, 12(2), 81-88. [DOI:10.51227/ojafr.2022.11]
Condello, M., Caraglia, M., Castellano, M., Arancia, G., & Meschini, S. (2013). Structural and functional alterations of cellular components as revealed by electron microscopy. Microscopy Research and Technique, 76(10), 1057-1069. [DOI:10.1002/jemt.22266] [PMID]
Elgendy, W., Swelem, R., Aboudiba, N., & Elwafa, R. A. (2022). Role of MicroRNA-326 and its target genes Bcl-xL and bak as potential markers in platelet storage lesion in blood banks. Indian Journal of Hematology and Blood Transfusion, 38(4), 731-738. [DOI:10.1007/s12288-022-01542-0][PMID]
Flanagan, E. P., Hinson, S. R., Lennon, V. A., Fang, B., Aksamit, A. J., & Morris, P. P., et al. (2017). ‘Glial fibrillary acidic protein immunoglobulin G as a biomarker of autoimmune astrocytopathy: Analysis of 102 patients. Annals of Neurology, 81(2), 298–309. [DOI:10.1002/ana.24881] [PMID]
Ilyin, V. N., & Alvani, A. R. (2016). ‘Ubiquity and formation of chronic fatigue in qualified sportsmen. Pedagogics, Psychology, Medical-Biological Problems of Physical Training and Sports, 20(3), 11-17. [DOI:10.15561/18189172.2016.0302]
Jaber Al-Mamoori, A. , Abdulameer Almustafa, H. M. S., & Alsaffar, Y. (2022). Overexpressed toll-like receptor 2 and the influence on the severity of acute ischemic stroke. Archives of Razi Institute, 77(6), 2379-2384. [DOI:10.22092/ARI.2022.358615.2265]
Khabibullin, R., Khabibullin, I., Yagafarov, R., Bakirova, A., Fazlaev, R., & Karimov, F., et al. (2019). The influence of dietary supplements on the adaptive processes in animals after physical stress. Bulgarian Journal of Agricultural Science, 25 (Suppl. 2), 105-118. [Link]
Kholodny Yu, I., Malakhov, D. G., Orlov, V. A., Kartashov, S. I., Aleksandrov Yu, I., & Kovalchuk, M. V. (2021). Study of neurocognitive processes in the paradigm of information concealment. Experimental Psychology, 14(3), 17-39. [DOI:10.17759/exppsy.2021140302]
Kim, H., Murata, M. M., Chang, H., Lee, S. H., Kim, J., & Lee, J. H., et al. (2021). Optical and electron microscopy for analysis of nanomaterials. Advances in Experimental Medicine and Biology, 1309, 277–287. [DOI:10.1007/978-981-33-6158-4_12] [PMID]
Klang, V., Valenta, C., & Matsko, N. B. (2013). Electron microscopy of pharmaceutical systems. Micron (Oxford, England: 1993), 44, 45-74. [DOI:10.1016/j.micron.2012.07.008] [PMID]
Kuznetsov Yu, E., Lunegov, A. M., Ponamarev, V. S., & Romashova, E. B. (2022). Correlation relationships between the content of total bile acids and the main biochemical parameters of blood in minks (Mustela vison Schreber, 1777). Agricultural Biology, 57(6), 1217-1224. [DOI:10.15389/agrobiology.2022.6.1217eng]
Lebedeva, A. I., Muslimov, S. A., Afanasiev, S. A., & Kondratieva, D. S. (2019). The role of macrophages in the regeneration of muscle tissue induced by allogeneic biomaterial. Russian Journal of Immunology, 22(2-2), 849-851. [DOI:10.31857/S102872210006676-8]
Lebedeva, A. I., Muslimov, S. A., Gareev, E. M., Popov, S. V., & Afanasiev, S. A. (2018). ‘Stimulation of autologous progenitor and committed cells in ischemic damaged myocardium. Russian Journal of Cardiology, 23(11), 123-129. [DOI:10.15829/1560-4071-2018-11-123-129]
Lebedeva, I., Muslimov, S. A., Gareev, E. M., Popov, S. V., Afanasiev, S. A., & Kondratieva, D. S. (2021). ‘Allogeneic biomaterial as an inductor of regeneration in the myocardium injured by experimental ischemia. Pathological Physiology and Experimental Therapy, 65(1), 60-69. [DOI:10.25557/0031-2991.2021.01.60-69]
Lebedeva, A. I., Muslimov, S. A., Vagapova, V. Sh., & Shcherbakov D. A. (2019). ‘Morphological aspects of regeneration of skeletal muscle tissue induced by allogeneic biomaterial. Practical Medicine, 17(1), 98-102. [DOI:10.32000/2072-1757-2019-1-98-102]
Magaki, S., Hojat, S. A., Wei, B., So, A., & Yong, W. H. (2019). An introduction to the performance of immunohistochemistry. Methods in Molecular Biology (Clifton, N.J.), 1897, 289-298. [DOI:10.1007/978-1-4939-8935-5_25][PMID]
Material Safety Data Sheet Chloroform MSDS (2024). ScienceLab.com Chemicals and Laboratory Equipment. Retrieved from: [Link]
Meftahi, G. H., Hatef, B., & Pirzad Jahromi, G. (2023). Creatine activity as a neuromodulator in the central nervous system. Archives of Razi Institute; 78(4), 1169-1175. [DOI:10.32592/ARI.2023.78.4.1169][PMID]
Moreno, V., Smith, E. A., & Piña-Oviedo, S. (2022). Fluorescent Immunohistochemistry. Methods in Molecular Biology (Clifton, N.J.), 2422, 131–146. [DOI:10.1007/978-1-0716-1948-3_9] [PMID]
Ozawa, H. (2019). [Principles and basics of immunohistochemistry (Japanese)]. Nihon Yakurigaku Zasshi, 154(4), 156-164. [DOI:10.1254/fpj.154.156] [PMID]
Ponamarev, V., Yashin, A., Prusakov, A., & Popova, O. (2022). Influence of modern probiotics on morphological indicators of pigs’ blood in toxic dyspepsia. In A. Ronzhin, & A. Kostyaev (Eds), Agriculture digitalization and organic production. Smart Innovation, Systems and Technologies. Singapore: Springer. [DOI:10.1007/978-981-19-7780-0_12]
Prichard, J. W. (2014). Overview of automated immunohistochemistry. Archives of Pathology & Laboratory Medicine, 138(12), 1578–1582. [DOI:10.5858/arpa.2014-0083-RA] [PMID]
Customs Documents. (2024). Recommendation of the EEC dated November 14, 2023 No. 33 “On the Guidelines for working with laboratory (experimental) animals when conducting preclinical (non-clinical) studies. Retrieved from:[Link]
Schlattmann, P., Scherag, A., Rauch, G., & Mansmann, U. (2019). [The role of biostatistics in institutional review boards (German)]. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz, 62(6), 751–757. [DOI:10.1007/s00103-019-02951-9] [PMID]
Stankov, A., Belakaposka-Srpanova, V., Bitoljanu, N., Cakar, L., Cakar, Z., & Rosoklija, G. (2015). Visualization of microglia with the use of immunohistochemical double staining method for CD-68 and Iba-1 of cerebral tissue samples in cases of brain contusions. Prilozi (Makedonska akademija na naukite i umetnostite. Oddelenie za medicinski nauki), 36(2), 141–145. [DOI:141-145. 10.1515/prilozi-2015-0062] [PMID]
Sukswai, N., & Khoury, J. D. (2019). Immunohistochemistry innovations for diagnosis and tissue-based biomarker detection. Current Hematologic Malignancy Reports, 14(5), 368-375. [DOI:10.1007/s11899-019-00533-9] [PMID]
Zhou, Y., Yan, M., Pan, R., Wang, Z., Tao, X., & Li, C., et al. (2021). Radix Polygalae extract exerts antidepressant effects in behavioral despair mice and chronic restraint stress-induced rats probably by promoting autophagy and inhibiting neuroinflammation. Journal of Ethnopharmacology, 265,[DOI:10.1016/j.jep.2020.113317] [PMID] | ||
مراجع | ||
Aziz Anah, S., & Aziz Anah, S. (2023). New Recording of Toxoplasma gondii in Wild Tortoise Testudo graeca using Nested PCR Method. Archives of Razi Institute, 78(3), 1029–1034. [PMID]
Baryshev, V. A., Popova, O. S., & Ponamarev, V. S. (2022). New methods for detoxification of heavy metals and mycotoxins in dairy cows. Online Journal of Animal and Feed Research, 12(2), 81-88. [DOI:10.51227/ojafr.2022.11]
Condello, M., Caraglia, M., Castellano, M., Arancia, G., & Meschini, S. (2013). Structural and functional alterations of cellular components as revealed by electron microscopy. Microscopy Research and Technique, 76(10), 1057-1069. [DOI:10.1002/jemt.22266] [PMID]
Elgendy, W., Swelem, R., Aboudiba, N., & Elwafa, R. A. (2022). Role of MicroRNA-326 and its target genes Bcl-xL and bak as potential markers in platelet storage lesion in blood banks. Indian Journal of Hematology and Blood Transfusion, 38(4), 731-738. [DOI:10.1007/s12288-022-01542-0][PMID]
Flanagan, E. P., Hinson, S. R., Lennon, V. A., Fang, B., Aksamit, A. J., & Morris, P. P., et al. (2017). ‘Glial fibrillary acidic protein immunoglobulin G as a biomarker of autoimmune astrocytopathy: Analysis of 102 patients. Annals of Neurology, 81(2), 298–309. [DOI:10.1002/ana.24881] [PMID]
Ilyin, V. N., & Alvani, A. R. (2016). ‘Ubiquity and formation of chronic fatigue in qualified sportsmen. Pedagogics, Psychology, Medical-Biological Problems of Physical Training and Sports, 20(3), 11-17. [DOI:10.15561/18189172.2016.0302]
Jaber Al-Mamoori, A. , Abdulameer Almustafa, H. M. S., & Alsaffar, Y. (2022). Overexpressed toll-like receptor 2 and the influence on the severity of acute ischemic stroke. Archives of Razi Institute, 77(6), 2379-2384. [DOI:10.22092/ARI.2022.358615.2265]
Khabibullin, R., Khabibullin, I., Yagafarov, R., Bakirova, A., Fazlaev, R., & Karimov, F., et al. (2019). The influence of dietary supplements on the adaptive processes in animals after physical stress. Bulgarian Journal of Agricultural Science, 25 (Suppl. 2), 105-118. [Link]
Kholodny Yu, I., Malakhov, D. G., Orlov, V. A., Kartashov, S. I., Aleksandrov Yu, I., & Kovalchuk, M. V. (2021). Study of neurocognitive processes in the paradigm of information concealment. Experimental Psychology, 14(3), 17-39. [DOI:10.17759/exppsy.2021140302]
Kim, H., Murata, M. M., Chang, H., Lee, S. H., Kim, J., & Lee, J. H., et al. (2021). Optical and electron microscopy for analysis of nanomaterials. Advances in Experimental Medicine and Biology, 1309, 277–287. [DOI:10.1007/978-981-33-6158-4_12] [PMID]
Klang, V., Valenta, C., & Matsko, N. B. (2013). Electron microscopy of pharmaceutical systems. Micron (Oxford, England: 1993), 44, 45-74. [DOI:10.1016/j.micron.2012.07.008] [PMID]
Kuznetsov Yu, E., Lunegov, A. M., Ponamarev, V. S., & Romashova, E. B. (2022). Correlation relationships between the content of total bile acids and the main biochemical parameters of blood in minks (Mustela vison Schreber, 1777). Agricultural Biology, 57(6), 1217-1224. [DOI:10.15389/agrobiology.2022.6.1217eng]
Lebedeva, A. I., Muslimov, S. A., Afanasiev, S. A., & Kondratieva, D. S. (2019). The role of macrophages in the regeneration of muscle tissue induced by allogeneic biomaterial. Russian Journal of Immunology, 22(2-2), 849-851. [DOI:10.31857/S102872210006676-8]
Lebedeva, A. I., Muslimov, S. A., Gareev, E. M., Popov, S. V., & Afanasiev, S. A. (2018). ‘Stimulation of autologous progenitor and committed cells in ischemic damaged myocardium. Russian Journal of Cardiology, 23(11), 123-129. [DOI:10.15829/1560-4071-2018-11-123-129]
Lebedeva, I., Muslimov, S. A., Gareev, E. M., Popov, S. V., Afanasiev, S. A., & Kondratieva, D. S. (2021). ‘Allogeneic biomaterial as an inductor of regeneration in the myocardium injured by experimental ischemia. Pathological Physiology and Experimental Therapy, 65(1), 60-69. [DOI:10.25557/0031-2991.2021.01.60-69]
Lebedeva, A. I., Muslimov, S. A., Vagapova, V. Sh., & Shcherbakov D. A. (2019). ‘Morphological aspects of regeneration of skeletal muscle tissue induced by allogeneic biomaterial. Practical Medicine, 17(1), 98-102. [DOI:10.32000/2072-1757-2019-1-98-102]
Magaki, S., Hojat, S. A., Wei, B., So, A., & Yong, W. H. (2019). An introduction to the performance of immunohistochemistry. Methods in Molecular Biology (Clifton, N.J.), 1897, 289-298. [DOI:10.1007/978-1-4939-8935-5_25][PMID]
Material Safety Data Sheet Chloroform MSDS (2024). ScienceLab.com Chemicals and Laboratory Equipment. Retrieved from: [Link]
Meftahi, G. H., Hatef, B., & Pirzad Jahromi, G. (2023). Creatine activity as a neuromodulator in the central nervous system. Archives of Razi Institute; 78(4), 1169-1175. [DOI:10.32592/ARI.2023.78.4.1169][PMID]
Moreno, V., Smith, E. A., & Piña-Oviedo, S. (2022). Fluorescent Immunohistochemistry. Methods in Molecular Biology (Clifton, N.J.), 2422, 131–146. [DOI:10.1007/978-1-0716-1948-3_9] [PMID]
Ozawa, H. (2019). [Principles and basics of immunohistochemistry (Japanese)]. Nihon Yakurigaku Zasshi, 154(4), 156-164. [DOI:10.1254/fpj.154.156] [PMID]
Ponamarev, V., Yashin, A., Prusakov, A., & Popova, O. (2022). Influence of modern probiotics on morphological indicators of pigs’ blood in toxic dyspepsia. In A. Ronzhin, & A. Kostyaev (Eds), Agriculture digitalization and organic production. Smart Innovation, Systems and Technologies. Singapore: Springer. [DOI:10.1007/978-981-19-7780-0_12]
Prichard, J. W. (2014). Overview of automated immunohistochemistry. Archives of Pathology & Laboratory Medicine, 138(12), 1578–1582. [DOI:10.5858/arpa.2014-0083-RA] [PMID]
Customs Documents. (2024). Recommendation of the EEC dated November 14, 2023 No. 33 “On the Guidelines for working with laboratory (experimental) animals when conducting preclinical (non-clinical) studies. Retrieved from:[Link]
Schlattmann, P., Scherag, A., Rauch, G., & Mansmann, U. (2019). [The role of biostatistics in institutional review boards (German)]. Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz, 62(6), 751–757. [DOI:10.1007/s00103-019-02951-9] [PMID]
Stankov, A., Belakaposka-Srpanova, V., Bitoljanu, N., Cakar, L., Cakar, Z., & Rosoklija, G. (2015). Visualization of microglia with the use of immunohistochemical double staining method for CD-68 and Iba-1 of cerebral tissue samples in cases of brain contusions. Prilozi (Makedonska akademija na naukite i umetnostite. Oddelenie za medicinski nauki), 36(2), 141–145. [DOI:141-145. 10.1515/prilozi-2015-0062] [PMID]
Sukswai, N., & Khoury, J. D. (2019). Immunohistochemistry innovations for diagnosis and tissue-based biomarker detection. Current Hematologic Malignancy Reports, 14(5), 368-375. [DOI:10.1007/s11899-019-00533-9] [PMID]
Zhou, Y., Yan, M., Pan, R., Wang, Z., Tao, X., & Li, C., et al. (2021). Radix Polygalae extract exerts antidepressant effects in behavioral despair mice and chronic restraint stress-induced rats probably by promoting autophagy and inhibiting neuroinflammation. Journal of Ethnopharmacology, 265,[DOI:10.1016/j.jep.2020.113317] [PMID]
| ||
آمار تعداد مشاهده مقاله: 339 تعداد دریافت فایل اصل مقاله: 321 |