تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,573 |
تعداد دریافت فایل اصل مقاله | 97,206,175 |
واکنشهای فیزیولوژیکی و بیوشیمیایی برخی از ارقام و پایههای انگور تحت تیمار سدیم نیتروپروساید در شرایط تنش شوری | ||
علوم باغبانی ایران | ||
دوره 54، شماره 4، دی 1402، صفحه 661-683 اصل مقاله (1.47 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2023.355700.2093 | ||
نویسندگان | ||
فاطمه پیله؛ علی عبادی* ؛ ذبیح اله زمانی؛ مصباح بابالار | ||
گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه تهران، کرج. ایران | ||
چکیده | ||
به منظور بررسی تاثیر سدیم نیتروپروساید بر کاهش اثر منفی تنش شوری در چهار رقم و پایه انگور، پژوهشی به صورت فاکتوریل در قالب طرح بلوکهای کامل تصادفی با سه تکرار انجام شد. قلمههای ریشهدار شده دو ساله هر چهار رقم و پایه (بیدانه سفید، یاقوتی، 140Ru و 1103P) با سه سطح شوری (شوری در محلول غذایی کرامر) صفر، 25 و 50 میلیمولار کلرید سدیم (با هدایت الکتریکی 3/1، 50/4 و 80/6 دسیزیمنس بر متر) و سه سطح سدیم نیتروپروساید، صفر، 5/0 و 1 میلیمولار تیمار شدند. نتایج نشان داد که با افزایش سطوح شوری، شاخصهای محتوای نسبی آب برگ، میزان کلروفیل a، b و کاروتنوئید کل کاهش یافتند. میزان پرولین، گلایسینبتائین، قندهای محلول، مواد فنلی کل، نشت یونی، مالوندیآلدئید و پراکسیدهیدروژن با افزایش سطوح شوری افزایش یافتند. طبق نتایج بدست آمده، کاربرد سدیم نیتروپروساید بخصوص غلظت یک میلیمولار در شرایط تنش شوری باعث افزایش محتوای نسبی آب برگ، میزان رنگیزههای فتوسنتزی، مواد فنلی کل، پرولین، گلایسینبتائین، قندهای محلول و همچنین کاهش میزان نشت یونی، مالوندیآلدئید و پراکسیدهیدروژن در ارقام و پایههای انگور مورد بررسی گردید. تیمار سدیم نیتروپروساید روی ارقام بیدانه سفید و یاقوتی بیشتر از پایهها تاثیر گذاشت. مطابق با نتایج، رقم بیدانه سفید حساس به شوری بود، در حالی که پایه 140Ru نسبت به ارقام بیدانه سفید، یاقوتی و پایه 1103P به شوری مقاومتر بود. | ||
کلیدواژهها | ||
پایههای 140Ru و 1103P؛ تنش کلرید سدیم؛ نیتریک اکسید | ||
مراجع | ||
دولتیبانه، حامد (1395). بررسی تغییرپذیریهای عناصر غذایی، ویژگیهای رشدی و فیزیولوژیک در چند رقم و دورگه بینگونهای انگور در شرایط تنش شوری ناشی از سدیم کلرید. علوم باغبانی ایران، 47(1)، 33-44. طاهری، سحر؛ سعیدیسر، سکینه؛ مسعودیان، ناهید؛ عبادی، مصطفی و رودی، بستان (1399). نقش محافظتی مولکولی و بیوشیمیایی نیتروپروسید سدیم در گوجه فرنگی (Lycopersicon esculentum Mill.) تحت تنش شوری. مجله فیزیولوژی گیاهی، 11(1)، 3465-3472. طحانیان، حمید. رضا (1397). ارزیابی مکانیسمهای فیزیولوژیکی و مولکولی تحمل برخی پایههای درون و بین گونهای انگور به شوری و کلروز ناشی از آهک. رساله دکتری، دانشگاه تهران، تهران. عزیزی، حسین؛ حسنی، عباس؛ صدقیانی، میر حسن؛ عباسپور، ناصر و دولتی بانه، حامد (2017). تأثیر محلولپاشی سیلیکات پتاسیم و سولفات روی بر برخی ویژگیهای فیزیولوژیک دو رقم انگور در شرایط تنش شوری. علوم باغبانی ایران، 47(4)، 797-810. محمدخانی، نیر و عباسپور، ناصر (1397). اثر شوری بر سیستم آنتیاکسیدانی در ده ژنوتیپ انگور. فیزیولوژی گیاهی، 8(1 )، 2247-2255. مینازاده، راضیه؛ کریمی، روح الله و محمد پرست، بهروز (1397). اثر تغذیه برگی سولفات پتاسیم بر شاخصهای مورفو-فیزیولوژیکی انگور تحت تنش شوری . نشریه زیستشناسی گیاهی ایران، 10 (3)، 83-106. یوسفی، مهری؛ ناصری، لطفعلی و زارع نهندی، فریبرز (1398). اثرات نیتریک اکسید با بهبود تحمل شوری در پایههای گلابی با تنظیم محتوای پلی آمین. مجله فیزیولوژی گیاهی، 10(1)، 3023-3033.
REFERENCES Adnan, M. Y., Hussain, T., Asrar, H., Hamed, A., Gul, B., Nielsen, B., & Khan, M. A. (2016). Desmostachya bipinnata manages photosynthesis and oxidative stress at moderate salinity. Flora, 225, 1–9. Ahmed, F. F., Abdel-Aal, A. M. K. A., Mervat, A., & Ahmed, S. E. A. (2015). Tolerance of some grapevine cultivars to salinity and calcium carbonate in the soil. Stem Cell, 6, 45-64. Akcin, A., & Yalcin, E. (2016). Effect of salinity stress on chlorophyll, carotenoid content, and proline in Salicornia prostrata Pall. and Suaeda prostrata Pall. subsp. prostrata (Amaranthaceae). Brazilian Journal of Botany, 39, 101-106. Alam, H., Khattak, J. Z., Ksiksi, T. S., Saleem, M. H., Fahad, S., Sohail, H., Ali, Q., Zamin, M., El‐Esawi, M. A., Saud, S., & Jiang, X. (2021). Negative impact of long‐term exposure of salinity and drought stress on native Tetraena mandavillei L. Physiologia Plantarum, 172(2), 1336-1351. Arif, Y., Singh, P., Siddiqui, H., Bajguz, A., & Hayat, S. (2020). Salinity induced physiological and biochemical changes in plants: An omic approach towards salt stress tolerance. Plant Physiology and Biochemistry, 156, 64-77. Azizi, H., Hassani, A., Sadaghiani, M., Abbaspour, N., & Doulati-Baneh, H. (2017). Effect of foliar application of potassium silicate and zinc sulphate on some physiological parameters of two grapevine cultivars under salt stress conditions. Iranian Journal of Horticultural Science, 47(4), 797-810. (In Persian). Cramer, G. R., Ergül, A., Grimplet, J., Tillett, R. L., Tattersall, E. A., Bohlman, M. C., Vincent, D., Sonderegger, J., Evans, J., Osborne, C., & Quilici, D. (2007). Water and salinity stress in grapevines: Early and late changes in transcript and metabolite profiles. Functional & Integrative Genomics, 7, 111-134. Doulati-Baneh, H. (2016). Salinity effects on plant tissue nutritional status as well as growth and physiological factors in some cultivars and interspecies hybrids of grape. Iranian Journal of Horticultural Science, 47(1), 33-44. (In Persian). Duan, P., Ding, F., Wang, F., & Wang, B. S. (2007). Priming of seeds with nitric oxide donor sodium nitroprusside (SNP) alleviates the inhibition on wheat seed germination by salt stress. Zhi wu Sheng li yu fen zi Sheng wu xue xue bao. Journal of Plant Physiology and Molecular Biology, 33(3), 244-250. Fàbregas, N., & Fernie, A. R. (2019). The metabolic response to drought. Journal of Experimental Botany, 70(4), 1077-1085. Fancy, N. N., Bahlmann, A. K., & Loake, G. J. (2017). Nitric oxide function in plant abiotic stress. Plant, Cell & Environment, 40(4), 462-472. Fozouni, M., Abbaspour, N., & Baneh, H. D. (2012). Short term response of grapevine grown hydroponically to salinity: Mineral composition and growth parameters. Vitis, 51(3), 95-101. Ghadakchiasl, A., Mozafari, A. A., & Ghaderi, N. (2017). Mitigation by sodium nitroprusside of the effects of salinity on the morpho-physiological and biochemical characteristics of Rubus idaeus under in vitro conditions. Physiology and Molecular Biology of Plants, 23, 73-83. Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M. R., Fotopoulos, V., & Kimura, S. (2020). Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports, 10(1), 1-14. Grieve, C. M., & Grattan, S. R. (1983). Rapid assay for determination of water soluble quaternary ammonium compounds. Plant and Soil, 70, 303-307. Haider, M. S., Jogaiah, S., Pervaiz, T., Yanxue, Z., Khan, N., & Fang, J. (2019). Physiological and transcriptional variations inducing complex adaptive mechanisms in grapevine by salt stress. Environmental and Experimental Botany, 162, 455-467. Hand, M. J., Taffouo, V. D., Nouck, A. E., Nyemene, K. P., Tonfack, B., Meguekam, T. L., & Youmbi, E. (2017). Effects of salt stress on plant growth, nutrient partitioning, chlorophyll content, leaf relative water content, accumulation of osmolytes and antioxidant compounds in pepper (Capsicum annuum L.) cultivars. Not Bot Horti Agrobot Cluj Napoca, 45, 481–490. Hao, G. P., Du, X. H., & Shi, R. J. (2007). Exogenous nitric oxide accelerates soluble sugar, proline and secondary metabolite synthesis in Ginkgo biloba under drought stress. Zhi wu Sheng li yu fen zi Sheng wu xue xue bao. Journal of Plant Physiology and Molecular Biology, 33(6), 499-506. Hasanuzzaman, M., Bhuyan, M. B., Zulfiqar, F., Raza, A., Mohsin, S. M., Mahmud, J. A., Fujita, M., & Fotopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9(8), 681. Hashmat, S., Shahid, M., Tanwir, K., Abbas, S., Ali, Q., Niazi, N. K., Akram, M. S., Saleem, M. H., & Javed, M. T. (2021). Elucidating distinct oxidative stress management, nutrient acquisition and yield responses of Pisum sativum L. fertigated with diluted and treated wastewater. Agricultural Water Management, 247, 106720. Heath, R. L., & Packer, L. (1968). Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics, 125(1), 189-198. Hesami, M., Tohidfar, M., Alizadeh, M., & Daneshvar, M. H. (2020). Effects of sodium nitroprusside on callus browning of Ficus religiosa: An important medicinal plant. Journal of Forestry Research, 31, 789-796. Kamanga, R. M., Echigo, K., Yodoya, K., Mekawy, A. M. M., & Ueda, A. (2020). Salinity acclimation ameliorates salt stress in tomato (Solanum lycopersicum L.) seedlings by triggering a cascade of physiological processes in the leaves. Scientia Horticulturae, 270, 109434. Khan, I., Raza, M. A., Awan, S. A., Shah, G. A., Rizwan, M., Ali, B., Tariq, R., Hassan, M. J., Alyemeni, M. N., Brestic, M., & Zhang, X. (2020). Amelioration of salt induced toxicity in pearl millet by seed priming with silver nanoparticles (AgNPs): The oxidative damage, antioxidant enzymes and ions uptake are major determinants of salt tolerant capacity. Plant Physiology and Biochemistry, 156, 221-232. Khanna-Chopra, R., Semwal, V. K., Lakra, N., & Pareek, A. (2019). Proline–A key regulator conferring plant tolerance to salinity and drought. In Hasanuzzaman, M., Fujita, M., Oku, H. & Tofazzal Islam, M. (Eds), Plant tolerance to environmental stress, (pp. 59-80). CRC Press. Khoshbakht, D., Asghari, M. R., & Haghighi, M. (2018). Effects of foliar applications of nitric oxide and spermidine on chlorophyll fluorescence, photosynthesis and antioxidant enzyme activities of citrus seedlings under salinity stress. Photosynthetica, 56, 1313-1325. Kim, Y., Mun, B. G., Khan A. L., Waqas, M., Kim, H. H., Shahzad, R., Lmran, M., Yan, B. W., & Lee, L. J. (2018). Regulation of reactive oxygen and nitrogen species by salicylic acid in rice plants under salinity stress conditions. PLoS One, 13 (3), 1–20. Kumar, K., Manigundan, K., & Amaresan, N. (2017). Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions. Journal Basic Microbiol, 57, 141–150. Letey, J., Hoffman, G. J., Hopmans, J. W., Grattan, S., Suarez, D. L., Corwin, D. L., Oster, J. D., Wu, L., & Amrhein, C. (2011). Evaluation of soil salinity leaching requirement guidelines. A Gricultural Water Management, 98 (4), 502-506. Lichtenthaler, H. K., & Buschmann, C. (2001). Chlorophylls and carotenoids: Measurement and characterization by UV‐VIS spectroscopy. Current Protocols in Food Analytical Chemistry, 1(1), F4-3. Luttes, S., Kinet, J. M., & Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 46,1843-1852. Minazadeh, R., Karimi, R., & Mohammadparast, B. (2018). The effect of foliar nutrition of potassium sulfate on morpho-physiological indices of grapevine under salinity stress. Iranian Journal of Plant Biology, 10(3), 83-106. (In Persian). Mohammadkhani, N., & Abbaspour, N. (2017). Effects of salinity on antioxidant system in ten grape genotypes. Iranian Journal of Plant Physiology, 8(1), 2247-2255. (In Persian). Mohammadkhani, N., Heidari, R., & Abbaspour, N. (2013). Effects of salinity on antioxidant system in four grape (Vitis vinifera L.) genotypes. Vitis, 52(3), 105-110. Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59(1), 651-681. Munns, R., Day, D. A., Fricke, W., Watt, M., Arsova, B., Barkla, B. J., Bose, J., Byrt, C. S., Chen, Z. H., Foster, K. J., & Gilliham, M. (2020). Energy costs of salt tolerance in crop plants. New Phytologist, 225(3), 1072-1090. Pandey, S., Fartyal, D., Agarwal, A., Shukla, T., James, D., Kaul, T., Negi, Y. K., Arora, S., & Reddy, M. K. (2017). Abiotic stress tolerance in plants: Myriad roles of ascorbate peroxidase. Front, Plant Science, 8, 581. Paquin, R., & Lechasseur, P. (1979). Observationssur une methode de dosage de la proline libre les extraits de plantes. Canad, Journal Botany, 57, 1851-1854. Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Hussan, M. U., & Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nat Science,17, 34–40. Sarropoulou, V., & Maloupa, E. (2017). Effect of the NO donor “sodium nitroprusside”(SNP), the ethylene inhibitor “cobalt chloride”(CoCl 2) and the antioxidant vitamin E “α-tocopherol” on in vitro shoot proliferation of Sideritis raeseri Boiss. & Heldr. subsp. raeseri. Plant Cell, Tissue and Organ Culture (PCTOC), 128, 619-629. Sharma, R., Bhardwaj, R., Thukral, A. K., Al-Huqail, A. A., Siddiqui, M. H., & Ahmad, P. (2019a). Oxidative stress mitigation and initiation of antioxidant and osmoprotectant responses mediated by ascorbic acid in (Brassica juncea L.) subjected to copper (II) stress. Ecotoxicol. Environ. Saf, 182, 109436. Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M., & Zheng, B. (2019b). Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules, 24(13), 2452. Sheligl, H. Q. (1986). Die verwertung orgngischer souren durch chlorella lincht. Planta Journal, 47-51. Siddiqui, M. H., Alamri, S., Alsubaie, Q. D., Ali, H. M., Khan, M. N., Al-Ghamdi, A., & Alsadon, A. (2020). Exogenous nitric oxide alleviates sulfur deficiency-induced oxidative damage in tomato seedlings. Nitric Oxide, 94, 95–107. Silva, K. S., Tabaldi, L. A., Rossato, L. V., Cavichioli, B. M., Basilio, V. B., & Machado, S. L. O. (2019). Contents of pigments and activity of antioxidant enzymes in rice plants pre-treated with sodium nitroprusside and exposed to clomazone. Planta Daninha, 37. Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158. Sofy, M. R., Elhawat, N., & Alshaal, T. (2020). Glycine betaine counters salinity stress by maintaining high K+/Na+ ratio and antioxidant defense via limiting Na+ uptake in common bean (Phaseolus vulgaris L.). Ecotoxicology and Environmental Safety, 200, 110732. Sohrabi, S., Ebadi, A., Jalali, S., & Salami, S. A. (2017). Enhanced values of various physiological traits and VvNAC1 gene expression showing better salinity stress tolerance in some grapevine cultivars as well as rootstocks. Scientia Horticulturae, 225, 317-326. Taheri, S., Saeidisar, S., Masoudian, N., Ebadi, M., & Roudi, B. (2020). Molecular and biochemical protective roles of sodium nitroprusside in tomato (Lycopersicon esculentum Mill.) under salt stress. Iranian Journal of Plant Physiology, 11(1), 3465-3472. (In Persian). Tahanian, H. R. (2019). Molecular and physiological evaluation on tolerance of some within and between species of grapevine rootstocks to salinity and lime-induced chlorosis. Ph.D. Thesis, University of Tehran, Tehran. (In Persian). Turner, N. C. (1981). Techniques and experimental approaches for the measurement of plant water status. Plant Soil, 58, 339-366. Velikova, V., Yordanov, I., & Edreva, A. J. P. S. (2000). Oxidtive stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science, 151(1), 59-66. Walker, R. R., Blackmore, D. H., Gong, H., Henderson, S. W., Gilliham, M., & Walker, A. R. (2018). Analysis of the salt exclusion phenotype in rooted leaves of grapevine (Vitis spp.). Australian Journal of Grape and Wine Research, 24, 317–326. Yousefi, M., Naseri, L., & Zaare-Nahandi, F. (2019). Nitric oxide ameliorates salinity tolerance in Pyrodwarf pear (Pyrus communis) rootstocks by regulating polyamine content. Iranian Journal of Plant Physiology, 10(1), 3023-3033. (In Persian). Zhang, X., Walker, R. R., Stevens, R. M., & Prior, L. D. (2002). Yield salinity relationships of different grapevine (Vitis vinifera L. ) scion- rootstock combinations. Australian Journal of Grape and Wine Research, 8(3), 150-156. Zheng, C., Jiang, D., Liu, F., Dai, T., Liu, W., Jing, Q., & Cao, W. (2009). Exogenous nitric oxide improves seed germination in wheat against mitochondrial oxidative damage induced by high salinity. Environmental and Experimental Botany, 67(1), 222-227. | ||
آمار تعداد مشاهده مقاله: 152 تعداد دریافت فایل اصل مقاله: 218 |