- Acharya, T. D., Subedi, A., Yang, I. T., & Lee, D. H. (2018). Combining Water Indices for Water and Background Threshold in Landsat Image. Proceedings, 2, 143-149.
- Al-Juaidi, A. E. M., Nassar, A.M., & Al-Juaidi, O.E.M. (2018). Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors. Arab J Geosci, 11, 765, 1-10.
- Atkinson, P. M., Jeganathan, C., Dash, J., & Atzberger, C. (2012). Inter-comparison of four models for smoothing satellite sensor time-series data to estimate vegetation phenology. Remote Sensing of Environment, 123, 400-417.
- Bhatt, C.M., Rao, G.S., Farooq, M., Manjusree, P., Shukla, A., & Sharma, S.V.S.P. (2017) Satellite-Based Assessment of the Catastrophic Jhelum Floods of September 2014, Jammu & Kashmir, India. Journal of Geomatics, Natural Hazards and Risk, 8, 309-327.
- Breiman, L. 1996. Bagging predictors. Machine Learning, 26, 123-140.
- Nielsen, M. A. (2015). Neural Networks and Deep Learning, Vol. 2018, Determination Press, San Francisco, California.
- Breiman, L. 2001. Random forests. Machine Learning, 45, 5-32.
- Drusch, M & et al. (2012). “Sentinel-2: ESA’s optical high-resolution mission for GMES operational services,” Remote Sensing of Environment, 120, 25-36.
- ERDAS, “Field Guide,” 5th Edition, ERDAS, Inc., Atlanta, 1999.
- Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sensing of Environment. 140, 23- 35.
- Fisher, A., Flood, N., & Danaher, T. (2016). Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sensing of Environment. 175, 167- 182.
- Gao, F., Hilker, T., Zhu, X., Anderson, M., Masek, J., Wang, P., & Yang, Y. (2015). Fusing Landsat and MODIS Data for Vegetation Monitoring. IEEE Geoscience and Remote Sensing Magazine. 3, 47- 60.
- Ghassemian, H. (2016). A Review of Remote Sensing Image Fusion Methods. Information Fusion, 32, 75-89.
- Guvel, S. P., Akgul, M. A., Aksu, H. (2022). Flood inundation maps using Sentinel-2: a case study in Berdan Plain. Water Supply, 22 (4), 4098–4108.
- Jiang, W., Ni, Y., Pang, Z., He, G., Fu, J., Lu, J., Yang, K., Long, T., & Lei, T. (2020). A new index for identifying water body from sentinel-2 satellite remote sensing imagery, ISPRS Annals. Photogramm. Remote Sensing, 3, 33-38.
- Jensen, V. (2014). Remote sensing of the environment: An earth resource perspective. Prentice-Hall, Inc. 2, 1-10.
- Khosravi, K., Nohani, E., Maroufinia, E., & Pourghasemi, H. R. (2016). A GIS-based flood susceptibility assessment and its mapping in Iran: a comparison between frequency ratio and weights-of-evidence bivariate statistical models with multi-criteria decision-making technique. Natural Hazards 83, 947–987.
- Klemas, V. (2015). Remote Sensing of Floods and Flood-Prone Areas: An Overview. Journal of Coastal Research, 31, 1005-1013.
- Kuncheva, L. (2004). Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons. publication, Hoboken, New jersey. canada.
- Kuncheva, L., & Whitaker, C. J. (2003). Measures of diversity in classifier ensemble and their relationship with the ensemble accuracy, Machine Learning, 51, 181- 207.
- Mather, P., & Tso, B. (2009). Classification Methods for Remotely Sensed Data. CRC Press, Boca Raton.
- Mcfeeters, S. K. (1996). The use of the normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing, 17, 1425-1432.
- Nandi, I., Srivastava, P. K., & Shah, K. (2017). Floodplain Mapping through Support Vector Machine
- and Optical/Infrared Images from Landsat 8 OLI/TIRS Sensors: Case Study from Varanasi. Water Resource Manage, 1568, 1-15.
- Ning, F. S., & Lee, Y. C. (2021). Combining Spectral Water Indices and Mathematical Morphology to Evaluate Surface Water Extraction in Taiwan. Water, 13, 2774-2791.
- Ogadhawara, I., Curtarelli, M. P., & Ferreira, C. M. (2013). The use of optical remote sensing for mapping flooded areas. Journsl of Engineering Research and Application, 3, 1956-1960.
- Otukei, J. R., & Blaschke, T. (2010). Land Cover Change Assessment Using Decision Trees, Support Vector Machines and Maximum Likelihood Classification Algorithms. International Journal of Applied Earth Observation and Geoinformation, 12, 27-S31.
- Pandit, V., & Bhiwani, R. J. (2015). Image Fusion in Remote Sensing Applications: A Review. International Journal of Computer Applications 120, 22-32.
- Richards, J. A. (2006). Remote Sensing Digital Image Analysis. Springer.
- Samadzadegan, F., Tabibmahmoudi, F., & Bigdeli, B. (2015). Data fusion in remote sensing: theory and methods: In Persian.
- Sanyal, J., & Lu, X.X. (2004). Application of Remote Sensing in Flood Management with Special Reference to Monsoon Asia: A Review. Natural Hazards, 33, 283-301.
- Schumann, G. J. P., & Moller, D. K. (2015). Microwave remote sensing of flood inundation. Physics and Chemistry of the Earth, V83-84, 84-95.
- Sghaier, M. O., Hammami, I., Foucher, S., & Lepage, R. (2018). Flood Extent Mapping from Time-Series SAR Images Based on Texture Analysis and Data Fusion. Remote Sens, 10, 237, 1-30.
- Shahabi, H., Shirzadi, A., Ghaderi, K., Omidvar, E., Al-Ansari, N., Clague, J.J., Geertsema, M., Khosravi, K., Amini, A., Bahrami, S., & et al. (2020). Flood Detection and Susceptibility Mapping Using Sentinel-1 Remote Sensing Data and a Machine Learning Approach: Hybrid Intelligence of Bagging Ensemble Based on K-Nearest Neighbor Classifier. Remote Sensing, 12, 266, 1- 30.
- Sigurdsson, J., Armannsson, S.E., Ulfarsson, S.E., & Sveinsson, J.R. (2022). Fusing Sentinel-2 and Landsat 8 Satellite Images Using a Model-Based Method. Remote Sensing, 14(13), 3224.
- Tavus, B., Kocaman, S., Nefeslioghlu, H. A., & Gokceoglu, C. (2020). A Fusion approach for flood mapping using sentinel-1 and sentinel-2 datasets. Int. Arch. Photogramm. Remote Sensing. Spatial Inf. Sci., XLIII-B3, 641-648.
- Terry, A., Samuel, G., John, G., & Darrel, W. (2006). Landsat-7 Long-Term Acquisition Plan. Photogrammetric Engineering & Remote Sensing, 10, 1137-1146.
- Tien Bui, D., Khosravi, K., Li, S., Shahabi, H., Panahi, M., Singh, V.P., Chapi, K., Shirzadi, A., Panahi, S., Chen, W., & et al. (2018). New Hybrids of ANFIS with Several Optimization Algorithms for Flood Susceptibility Modeling. Water, 10, 1210, 1-28.
- Tien Bui, D., Khosravi, K., Shahabi, H., Daggupati, P., Adamowski, J.F., Melesse, A.M., Thai Pham, B., Pourghasemi, H.R., Mahmoudi, M., Bahrami, S., & et al. (2019). Flood Spatial Modeling in Northern Iran Using Remote Sensing and GIS: A Comparison between Evidential Belief Functions and Its Ensemble with a Multivariate Logistic Regression Model. Remote Sensing, 11, 1589, 1-27.
- Vapnik, V. (1979). Estimation of dependences based on empirical data [in Russian]. Nauka, Moscow. (English translation: Springer-Verlag, New York).
- Vapnik, V. (1995). The nature of statistical learning theory. New York: Springer-Verlag.
- Wang, Q., Blackburn, G. A., Onojeghuo, A. O., Dash, J., Zhou, L., Zhang, Y., & Atkinson, P.M. (2017). Fusion of Landsat 8 OLI and Sentinel-2 MSI Data. IEEE Trans. Geosci. Remote Sens, 55, 3885-3899.
- H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International journal of remote sensing. 27, 3025- 3033.
- Yu, J. J., Qin, X. S., & Larsen, O. (2012). Joint Monte Carlo and possibilistic simulation for flooddamage assessment. Stoch Environ Res Risk Assess, 27(3), 1-12.
- Zhang, H., Zhang, Y., Gao, T., Lan, Sh., Tong, F., & Li, M. (2023). Landsat-8 and Sentinel-2 Fused Dataset for High Spatial-Temporal Resolution Monitoring of Farmland in China’s Diverse Latitudes. Remote Sensing, 15(11), 2951.
- Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and expansion of the Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, and Sentinel 2 images. Remote Sensing of Environment, 159, 269- 277.
|