![سامانه نشر مجلات علمی دانشگاه تهران](./data/logo.png)
تعداد نشریات | 162 |
تعداد شمارهها | 6,578 |
تعداد مقالات | 71,069 |
تعداد مشاهده مقاله | 125,677,959 |
تعداد دریافت فایل اصل مقاله | 98,909,186 |
ارزیابی تاثیر تودههای بومی به عنوان پایه بر میزان تحمل به تنش خشکی در هنداوانه 'کریمسون سوئیت' | ||
علوم باغبانی ایران | ||
دوره 54، شماره 4، دی 1402، صفحه 553-573 اصل مقاله (1.34 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2023.356417.2100 | ||
نویسندگان | ||
جابر پناهنده* 1؛ علی پارسافر1؛ داود زارع حقی2؛ محمدولی حبیبی3؛ اصغر محمدی3 | ||
1گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران | ||
2گروه علوم مهندسی خاک، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران. | ||
3گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران. | ||
چکیده | ||
استفاده از پایه های متحمل به خشکی از جمله هندوانههای بذری، دیمی و کدو یک راهحل موثر در افزایش تحمل به تنش خشکی در هندوانه است. بدین-منظور این آزمایش بصورت گلخانهای به منظور ارزیابی اثر تیمار آبیاری در سه سطح ظرفیت مزرعه ای (FC 6/0- 3/0 و :8/0-6/0: 8/0-1) و تیمار پایه در پنج سطح (شاهد، سه پایه هندوانه دیم و بذری: سبزوار، خواجه و آشتیان و یک پایه کدو: شینتوزا) بر پارامترهای فیزیولوژیک و بیوشیمیایی در هندوانه رقم کریمسون سوییت سوپر دراگون F1 اجرا شد. نتایج نشان داد که با افزایش سطوح خشکی تعداد روزنه برگ در گیاهان پیوندی و غیرپیوندی کاهش مییابد و گیاهان پیوند شده روی پایه شینتوزا تراکم روزنهای بالاتری داشتند. تنش خشکی سبب کاهش معنیدار شاخص کلروفیل، محتوای نسبی آب برگ و افزایش نشت الکترولیت در هندوانههای مورد مطالعه شد. ظرفیت آنتیاکسیدانی کل و فعالیت آنزیمهای کاتالاز و پراکسیداز در نتیجه تنش خشکی افزایش یافت، اما این افزایش در گیاهان پیوندی روی پایههای شینتوزا و سبزوار بیشتر از گیاهان پیوند شده روی پایههای آشتیان و خواجه و همچنین هندوانههای غیرپیوندی بود. هندوانههای پیوند شده روی پایههای سبزوار و شینتوزا بالاترین، درحالیکه هندوانههای غیر پیوندی و پیوند شده روی پایه آشتیان کمترین میزان محتوای ترکیبات فنلی برگ را تولید نمودند.. سطح پتاسیم و فسفر در گیاهان با آبیاری نرمال بالاتر از گیاهان تحت تنش بود. در نتیجه صفات عملکرد و رشد رویشی بطور معنیداری تحت تاثیر تیمارهای آبیاری و پیوند قرار گرفتند. | ||
کلیدواژهها | ||
آنتیاکسیدان؛ فنل؛ پرولین؛ پیوند سبزیها؛ تیمار آبیاری | ||
مراجع | ||
فاطمه، دانشمند.، 1393. پاسخ سیستم دفاع آنتیاکسیدان گیاه گوجه فرنگی به تنش کم آبی و برهمکنش آن با آسکوربیک اسید. زیست شناسی گیاهی ایران، 19،72-75. اسماعیل، مددخواه،. 1396. ارزیابی صفات فیزیولوژیکی، بیوشیمیایی و عملکرد خیار گلخانهای پیوند شده روی پایه های کدو تحت تنش شوری ناشی از NaCl در شرایط هیدروپونیک. رساله دکتری. دانشکده کشاورزی دانشگاه تبریز. سید جلال، طباطبایی.(1392). اصول تغذیه معدنی گیاهان. تبریز: انتشارات دانشگاه تبریز، 562 ص. مریم، بروجردنیا؛ محمدرضا، بی همتا، خلیل، عالمیسعید، خلیل و وحید، عبدوسی، (2016). اثر تنش خشکی بر میزان پرولین، کربوهیدراتهای محلول، نشت الکترولیتها و محتوای آب نسبی لوبیا (Phaseolus vulgaris L.). مجله علمی پژوهشی فیزیولوژی گیاهان زراعی، 8(29)، 23-41. Aebi, H. (1984). Catalase in vitro. In Methods in enzymology (Vol. 105, pp. 121-126). Academic press. Alan, O., Sen, F., & Duzyaman, E. (2017). The effectiveness of growth cycles on improving fruit quality for grafted watermelon combinations. Food Science and Technology, 38, 270-277. Andrews, P. K., & Marquez, C. S. (2010). Graft incompatibility. Horticultural reviews, 15, 183-231. Anjum, S. A., Xie, X., Wang, L. C., Saleem, M. F., Man, C., & Lei, W. (2011). Morphological, physiological and biochemical responses of plants to drought stress. African Journal of Agricultural Research, 6(9), 2026-2032. Barnabás, B., Jäger, K., & Fehér, A. (2008). The effect of drought and heat stress on reproductive processes in cereals. Plant, cell & environment, 31(1), 11-38. Barzegar, T., Lotfi, H., Rabiei, V., Ghahremani, Z., & Nikbakht, J. (2017). Effect of water-deficit stress on fruit yield, antioxidant activity, and some physiological traits of four Iranian melon genotypes. Iranian Journal of Horticultural Science, 48, 13-25. Bates, L. S., Waldren, R. A., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil, 39, 205-207. Bigdelo, M., Hassandokht, M. R., Rouphael, Y., Colla, G., Soltani, F., & Salehi, R. (2017). Evaluation of bitter apple (Citrullus colocynthis (L.) Schrad) as potential rootstock for watermelon. Australian Journal of Crop Science, 11(6), 727-732. (In Persian) Borojordania, M., Khalil Alami, S., Bi Hamta, M.R., & Abdoussi, V. (2016). The effect of drought stress on the amount of proline, soluble carbohydrates, leakage of electrolytes and relative water content of beans (Phaseolus vulgaris L.). Crop Physiology Journal Azad University, Ahvaz Branch. 29(8), 23-40. (In Persian) Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72(1-2), 248-254. Carroll, D. (1958). Role of clay minerals in the transportation of iron. Geochimica et Cosmochimica Acta, 14(1-2), 1-28. Chance, B., & Maehly, A. E. (1955). Methods in Enzymol. by SP Colowick and NO Kaplan, Academic Press, Inc., New York, 4, 273. Chaves, M. M., Santos, T. P., Souza, C. D., Ortuño, M. F., Rodrigues, M. L., Lopes, C. M., ... & Pereira, J. S. (2007). Deficit irrigation in grapevine improves water‐use efficiency while controlling vigour and production quality. Annals of applied biology, 150(2), 237-252. Chegah, S., Chehrazi, M., & Albaji, M. (2013). Effects of drought stress on growth and development frankenia plant (Frankenia Leavis). Bulgarian Journal of Agricultural Science, 19(4), 659-666. Crino, P., Bianco, C. L., Rouphael, Y., Colla, G., Saccardo, F., & Paratore, A. (2007). Evaluation of rootstock resistance to fusarium wilt and gummy stem blight and effect on yield and quality of a grafted ‘Inodorus’ melon. HortScience, 42(3), 521-525. Dasgan, H. Y., Kusvuran, S., Abak, K., Leport, L., Larher, F., & Bouchereau, A. (2009). The relationship between citrulline accumulation and salt tolerance during the vegetative growth of melon (Cucumis melo L.). Plant Soil Environ, 55(2), 51-57. Dixit, V., Pandey, V., & Shyam, R. (2001). Differential antioxidative responses to cadmium in roots and leaves of pea (Pisum sativum L. cv. Azad). Journal of Experimental Botany, 52(358), 1101-1109. Fao (2018) Food and agricultural organization of the united nations. http:// http://www.fao.org/faostat/en/#data/QC. (Accessed 10 May 2018). Farooq, M., Wahid, A., Kobayashi, N. S. M. A., Fujita, D. B. S. M. A., & Basra, S. M. A. (2009). Plant drought stress: effects, mechanisms and management. Sustainable agriculture, 153-188. He, Y., Zhu, Z., Yang, J., Ni, X., & Zhu, B. (2009). Grafting increases the salt tolerance of tomato by improvement of photosynthesis and enhancement of antioxidant enzymes activity. Environmental and Experimental Botany, 66(2), 270-278. Huang, Y., Li, J., Hua, B., Liu, Z., Fan, M., & Bie, Z. (2013). Grafting onto different rootstocks as a means to improve watermelon tolerance to low potassium stress. Scientia Horticulturae, 149, 80-85. Huang, Y., Tang, R., Cao, Q., Bie, Z. (2009) Improving the fruit yield and quality of cucumber by grafting onto the salt tolerant rootstock under NaCl stress. Scientia Horticulturae. 122: 26–31. Kuscu, H., Turhan, A. H. M. E. T., Özmen, N., Aydinol, P., Büyükcangaz, H., & Demir, A. O. (2015). Deficit irrigation effects on watermelon (Citrullus vulgaris) in a sub humid environment. JAPS: Journal of Animal & Plant Sciences, 25(6). Kusumi, K., Hirotsuka, S., Kumamaru, T., & Iba, K. (2012). Increased leaf photosynthesis caused by elevated stomatal conductance in a rice mutant deficient in SLAC1, a guard cell anion channel protein. Journal of Experimental Botany, 63(15), 5635-5644. Lee, J. M., & Oda, M. (2002). Grafting of herbaceous vegetable and ornamental crops. Horticultural Reviews-Westport Then New York-, 28, 61-124. Leskovar, D., Othman, Y., & Dong, X. (2016). Strip tillage improves soil biological activity, fruit yield and sugar content of triploid watermelon. Soil and Tillage Research, 163, 266-273. Lin, J. Y., & Tang, C. Y. (2007). Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chemistry, 101(1), 140-147. Liu, Y., Fiskum, G., & Schubert, D. (2002). Generation of reactive oxygen species by the mitochondrial electron transport chain. Journal of Neurochemistry, 80(5), 780-787. Lutts, S., Kinet, J. M., & Bouharmont, J. (1995). Changes in plant response to NaCl during development of rice (Oryza sativa L.) varieties differing in salinity resistance. Journal of Experimental Botany, 46(12), 1843-1852. Medeiros, D. B., Silva, E. C. D., Santos, H. R. B., Pacheco, C. M., Musser, R. D. S., & Nogueira, R. J. M. C. (2012). Physiological and biochemical responses to drought stress in Barbados cherry. Brazilian Journal of Plant Physiology, 24, 181-192. Mollavali, M., Bolandnazar, S. A., Schwarz, D., Rohn, S., Riehle, P., & Zaare Nahandi, F. (2016). Flavonol glucoside and antioxidant enzyme biosynthesis affected by mycorrhizal fungi in various cultivars of onion (Allium cepa L.). Journal of Agricultural and Food Chemistry, 64(1), 71-77. Nilsen, E. T., & Orcutte, D. M. (1996). Phytohormones and plant responses to stress. Physiology of Plant under Stress: Abiotic Factors, John Wiley and Sons, New York, 183-198. Petridis, A., Therios, I., Samouris, G., & Tananaki, C. (2012). Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environmental and Experimental Botany, 79, 37-43. Rolando, J. L., Ramírez, D. A., Yactayo, W., Monneveux, P., & Quiroz, R. (2015). Leaf greenness as a drought tolerance related trait in potato (Solanum tuberosum L.). Environmental and Experimental Botany, 110, 27-35. Rouphael, Y., Cardarelli, M., Colla, G., & Rea, E. (2008). Yield, mineral composition, water relations, and water use efficiency of grafted mini-watermelon plants under deficit irrigation. HortScience, 43(3), 730-736. Rouphael, Y., Cardarelli, M., Rea, E., & Colla, G. (2012). Improving melon and cucumber photosynthetic activity, mineral composition, and growth performance under salinity stress by grafting onto Cucurbita hybrid rootstocks. Photosynthetica, 50, 180-188. Rouphael, Y., Schwarz, D., Krumbein, A., & Colla, G. (2010). Impact of grafting on product quality of fruit vegetables. Scientia horticulturae, 127(2), 172-179. Samieiani, E., & Ansari, H. (2014). Drought stress impact on some biochemical and physiological traits of 4 groundcovers (Lolium perenne, Potentilla spp., Trifolium repens and Frankinia spp.) with potential landscape usage. Journal of Ornamental plants, 4(1), 53-60. Seleiman, M. F., Al-Suhaibani, N., Ali, N., Akmal, M., Alotaibi, M., Refay, Y., ... & Battaglia, M. L. (2021). Drought stress impacts on plants and different approaches to alleviate its adverse effects. Plants, 10(2), 259. Silva, T. R. D., Cazetta, J. O., Carlin, S. D., & Telles, B. R. (2017). Drought-induced alterations in the uptake of nitrogen, phosphorus and potassium, and the relation with drought tolerance in sugar cane. Ciência e Agrotecnologia, 41, 117-127. Sinha, S., & Saxena, R. (2006). Effect of iron on lipid peroxidation, and enzymatic and non-enzymatic antioxidants and bacoside-A content in medicinal plant Bacopa monnieri L. Chemosphere, 62(8), 1340-1350. Smart, R. E., & Bingham, G. E. (1974). Rapid estimates of relative water content. Plant physiology, 53(2), 258-260. Sorokina, M., McCaffrey, K. S., Deaton, E. E., Ma, G., Ordovás, J. M., Perkins-Veazie, P. M., ... & Parnell, L. D. (2021). A catalog of natural products occurring in watermelon - Citrullus lanatus. Frontiers in Nutrition, 8, 729822. Tarchoun, N., Saadaoui, W., Mezghani, N., Pavli, O. I., Falleh, H., & Petropoulos, S. A. (2022). The effects of salt stress on germination, seedling growth and biochemical responses of Tunisian squash (Cucurbita maxima Duchesne) germplasm. Plants, 11(6), 800. Weidner, S., Karolak, M., Karamac, M., Kosinska, A., & Amarowicz, R. (2009). Phenolic compounds and properties of antioxidants in grapevine roots [Vitis vinifera L.] under drought stress followed by recovery. Acta Societatis Botanicorum Poloniae, 78(2), 97-103. Yanyan, Y. A. N., Shuoshuo, W. A. N. G., Min, W. E. I., Biao, G. O. N. G., & Qinghua, S. H. I. (2018). Effect of different rootstocks on the salt stress tolerance in watermelon seedlings. Horticultural plant Journal, 4(6), 239-249. Yasemin, E., Ouml; zlem, A., & Nilay, O. Z. (2010). Leaf phenolic content of some squash rootstocks used on watermelon (Citrullus lanatus (Thunb.) Matsum and Nakai) growing and phenolic accumulation on grafted cultivar. African Journal of Agricultural Research, 5(8), 732-737. Zarehaghi, D., Neyshabouri, M. R., Gorji, M., Hassanpour, R., & Bandehagh, A. (2017). Growth and development of pistachio seedling root at different levels of soil moisture and compaction in greenhouse conditions. Soil and Water Research, 12(1), 60-66. Zhang, L., Gao, M., Hu, J., Zhang, X., Wang, K., & Ashraf, M. (2012). Modulation role of abscisic acid (ABA) on growth, water relations and glycinebetaine metabolism in two maize (Zea mays L.) cultivars under drought stress. International journal of molecular sciences, 13(3), 3189-3202. Zhang, Z. K., Hua, L. I., Yu, Z. H. A. G., Huang, Z. J., Kun, C. H. E. N., & Liu, S. Q. (2010). Grafting enhances copper tolerance of cucumber through regulating nutrient uptake and antioxidative system. Agricultural Sciences in China, 9(12), 1758-1770. Zhu, Z. S., & Guo ShiRong, G. S. (2009). Activities of antioxidant enzymes and photosynthetic characteristics in grafted watermelon seedlings under NaCl stress. | ||
آمار تعداد مشاهده مقاله: 178 تعداد دریافت فایل اصل مقاله: 211 |