تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,028 |
تعداد مشاهده مقاله | 125,499,595 |
تعداد دریافت فایل اصل مقاله | 98,762,195 |
مقایسهی تجمع سرب و میزان رشد دو جمعیت فلز دوست و غیر فلزدوست Marrubium cuneatum در شرایط هیدروپونیک | ||
تحقیقات آب و خاک ایران | ||
دوره 54، شماره 11، بهمن 1402، صفحه 1681-1695 اصل مقاله (1.51 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.364127.669557 | ||
نویسندگان | ||
بهروز صالحی اسکندری* 1؛ رضا حسامی2 | ||
1گروه زیستشناسی، دانشکده علوم، دانشگاه پیام نور، تهران- ایران | ||
2گروه زیستشناسی، دانشکده علوم، دانشگاه فرهنگیان، اصفهان- ایران | ||
چکیده | ||
پژوهش حاضر بهمنظور بررسی میزان سرب در خاکهای معدن سرب و رویشگاه تنگدوزان و مقایسه صفات رویشی و انباشت سرب جمعیت فلزدوست و غیرفلزدوست Marrubium cuneatum در سال 1397 در دانشگاه اصفهان انجام شد. گیاهان هر دو جمعیت به محیطهای هیدروپونیک منتقل شدند و بهمدت 14 روز در معرض تیمارهای مختلف سرب قرار گرفتند. نتایج نشان داد بالاترین میزان سرب موجود در خاکهای اطراف معدن (1968 میلیگرم در کیلوگرم)، بیش از 72 برابر میانگین جهانی است. صفات رویشی با افزایش غلظت سرب در هر دو جمعیت کاهش یافت اما همواره میزان این کاهش، در جمعیت فلزدوست کمتر بود بطوریکه در تیمار 200 میلیگرم در لیتر سرب، محتوای نسبی آب و وزن تر اندامهای هوایی بهترتیب در جمعیت فلزدوست 9/13 و 3/32 درصد ولی در جمعیت غیرفلزدوست 7/29 و 9/84 درصد نسبت به گروه شاهد هر جمعیت کاهش داشت. تجمع سرب در اندامهای هوایی و ریشه هر دو جمعیت با افزایش غلظت سرب در محیط افزایش داشت و در تیمارهای بالای سرب همواره میزان این تجمع در جمعیت فلزدوست بیشتر بود. بهطوریکه غلظت سرب در ریشه و اندامهای هوایی آن در بالاترین سطح سرب در ریشه و اندامهای هوایی هر گیاه جمعیت فلزدوست 2/15 و 9/0 میلیگرم بود که بهترتیب 1/3 و 6/3 برابر جمعیت غیرفلزدوست بود. میزان تجمع سرب در ریشه هر دو جمعیت در تمام تیمارها بیش از 15 برابر تجمع آن در ساقه است. جمعیت فلزدوست با داشتن سیستم دفاعی کارآمد، در شرایط انباشت بیشتر سرب میتواند رشد کرده و نسبت اندامهای هوایی به ریشه را افزایش دهد بنابراین میتوان از آن برای گیاهپالایی بهره برد. | ||
کلیدواژهها | ||
انباشت؛ رشد؛ خاک های معدن؛ گیاه پالایی؛ میزان انتقال | ||
سایر فایل های مرتبط با مقاله
|
||
مراجع | ||
Aken, B.V., Correa, P.A., & Schnoor, J.L. (2010). Phytoremediation of polychlorinated biphenyls: new trends and promises. Environmental science & technology, 44, 2767-2776. Alaboudi, K. A., Ahmed, B., & Brodie, G. (2018). Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Annals of agricultural sciences, 63(1), 123-12. Anawar, H., Garcia-Sanchez, A., Murciego, A., & Buyolo, T. (2006). Exposure and bioavailability of arsenic in contaminated soils from the La Parrilla mine, Spain. Environmental Geology, 50, 170-179. Argyropoulou, C., Karioti, A., & Skaltsa, H. (2009). Labdane diterpenes from Marrubium thessalum. Phytochemistry, 70(5), 635-640 Baker, A. J. (1981). Accumulators and excluders‐strategies in the response of plants to heavy metals. Journal of plant nutrition, 3(1-4), 643-654. Bi, X., Ren, L., Gong, M., He, Y., Wang, L., & Ma, Z. (2010). Transfer of cadmium and lead from soil to mangoes in an uncontaminated area, Hainan Island, China. Geoderma, 155(1-2), 115-12. Bineshpour, M., Payandeh, K., Nazarpour, A., & Sabzalipour, S. (2021). Assessment of Human Health Risk and Surface Soil Contamination by Some Toxic Elements in Arak City, Iran. Journal of Advances in Environmental Health Research, 9(4), 321-332. Brown, G., & Brinkmann, K. (1992). Heavy metal tolerance in Festuca ovina L. from contaminated sites in the Eifel Mountains, Germany. Plant and soil, 143, 239-24. Dalyan, E., Yüzbaşıoğlu, E., & Akpınar, I. (2020). Physiological and biochemical changes in plant growth and different plant enzymes in response to lead stress. Lead in Plants and the Environment, 129-147. Egendorf, S. P., Groffman, P., Moore, G., & Cheng, Z. (2020). The limits of lead (Pb) phytoextraction and possibilities of phytostabilization in contaminated soil: a critical review. International Journal of Phytoremediation, 22(9), 916-930. Erakhrumen, A. A., & Agbontalor, A. (2007). Phytoremediation: an environmentally sound technology for pollution prevention, control and remediation in developing countries. Educational Research and Review, 2(7), 151-156. Faucon, M.-P., Shutcha, M. N., & Meerts, P. (2007). Revisiting copper and cobalt concentrations in supposed hyperaccumulators from SC Africa: influence of washing and metal concentrations in soil. Plant and soil, 301, 29-36. Ghosh, P., Konar, A., Dalal, D. D., Roy, A., & Chatterjee, S. (2023). Phytoremediation technology: A review. blood pressure, 400, 5.00. Gupta, D., Huang, H., & Corpas, F. (2013). Lead tolerance in plants: strategies for phytoremediation. Environmental Science and Pollution Research, 20(4), 2150-2161. Haghnazar, H., Sabbagh, K., Johannesson, K. H., Pourakbar, M., & Aghayani, E. (2023). Phytoremediation capability of Typha latifolia L. to uptake sediment toxic elements in the largest coastal wetland of the Persian Gulf. Marine Pollution Bulletin, 188, 114699. Hesami, R., Salimi, A., & Ghaderian, S. M. (2018). Lead, zinc, and cadmium uptake, accumulation, and phytoremediation by plants growing around Tang-e Douzan lead–zinc mine, Iran. Environmental Science and Pollution Research, 25, 8701-8714. Huang, X., Zhu, F., He, Z., Chen, X., Wang, G., Liu, M., & Xu, H. (2020). Photosynthesis performance and antioxidative enzymes response of Melia azedarach and Ligustrum lucidum plants under Pb–Zn mine tailing conditions. Frontiers in Plant Science, 11, 571157. Islam, E., Liu, D., Li, T., Yang, X., Jin, X., Mahmood, Q., Tian, S., & Li, J. (2008). Effect of Pb toxicity on leaf growth, physiology and ultrastructure in the two ecotypes of Elsholtzia argyi. Journal of Hazardous Materials, 154(1-3), 914-926. Jiang, W., & Liu, D. (2010). Pb-induced cellular defense system in the root meristematic cells of Allium sativum L. BMC Plant Biology, 10, 1-8. Kastori, R., Petrović, M., & Petrović, N. (1992). Effect of excess lead, cadmium, copper, and zinc on water relations in sunflower. Journal of plant nutrition, 15(11), 2427-2439. Kaur, G., Singh, H. P., Batish, D. R., & Kumar, R. K. (2012). Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead to soil. Journal of environmental biology, 33(2), 265. Kharazian, N., & Hashemi, M. (2017). Chemotaxonomy and morphological studies in five Marrubium L. species in Iran. Iranian Journal of Science and Technology, Transactions A: Science, 41, 17-31. Kopittke, P., Asher, C., & Menzies, N. (2008). Prediction of Pb speciation in concentrated and dilute nutrient solutions. Environmental Pollution, 153(3), 548-554. Kumar, A., Kumar, A., MMS, C.-P., Chaturvedi, A.K., Shabnam, A.A., Subrahmanyam, G., Mondal, R., Gupta, D.K., Malyan, S.K., & Kumar, S.S. (2020). Lead toxicity: health hazards, influence on food chain, and sustainable remediation approaches. International journal of environmental research and public health, 17, 2179. Ladislas, S., El-Mufleh, A., Gérente, C., Chazarenc, F., Andrès, Y., & Béchet, B. (2012). Potential of aquatic macrophytes as bioindicators of heavy metal pollution in urban stormwater runoff. Water, Air, & Soil Pollution, 223, 877-888. Lu, N., Li, G., Sun, Y., Wei, Y., He, L., & Li, Y. (2021). Phytoremediation potential of four native plants in soils contaminated with Lead in a mining area. Land, 10(11), 1129. Mahdavian, K., Asadigerkan, S., Sangtarash, M. H., & Nasibi, F. (2022). Phytoextraction and phytostabilization of copper, zinc, and iron by growing plants in Chahar Gonbad copper mining area, Iran. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 92(2), 319-327. Mahdavian, K., Ghaderian, S. M., & Torkzadeh-Mahani, M. (2017). Accumulation and phytoremediation of Pb, Zn, and Ag by plants growing on Koshk lead–zinc mining area, Iran. Journal of soils and sediments, 17, 1310-1320. Mitra, A., Chatterjee, S., Voronina, A. V., Walther, C., & Gupta, D. K. (2020). Lead toxicity in plants: a review. Lead in Plants and the Environment, 99-116. Mohtadi, A., Ghaderian, S. M., & Schat, H. (2012). Lead, zinc and cadmium accumulation from two metalliferous soils with contrasting calcium contents in heavy metal-hyperaccumulating and non-hyperaccumulating metallophytes: a comparative study. Plant and soil, 361, 109-118. Pinho, S., & Ladeiro, B. (2012). Phytotoxicity by Lead as Heavy Metal Focus on Oxidative Stress. Journal of Botany. Pollard, A. J., Powell, K. D., Harper, F. A., & Smith, J. A. C. (2002). The genetic basis of metal hyperaccumulation in plants. Critical reviews in plant sciences, 21(6), 539-566. Pourrut, B., Shahid, M., Dumat, C., Winterton, P., & Pinelli, E. (2011). Lead uptake, toxicity, and detoxification in plants. Reviews of environmental contamination and toxicology, 213, 113-136. Ratul, A., Hassan, M., Uddin, M., Sultana, M., Akbor, M., & Ahsan, M. (2018). Potential health risk of heavy metals accumulation in vegetables irrigated with polluted river water. International food research journal, 25(1). Salehi-Eskandari, B., & Shahbazi Gahrouei, M. (2023). Investigation of the phytoremidation of lead in the metallicolous and non-metallicolous species Matthiola. Iranian Journal of Soil and Water Research 53, 2501-2513. (In Persian). Salehi-Eskandari, B., Gahrouei, M. S., Boyd, R. S., Rajakaruna, N., & Ghasemi, R. (2022). Physiological responses to lead and PEG-simulated drought stress in metallicolous and non-metallicolous Matthiola (Brassicaceae) species from Iran. South African Journal of Botany, 150, 1011-1021. Sammut, M., Noack, Y., Rose, J., Hazemann, J., Proux, O., Depoux, M., Ziebel, A., & Fiani, E. (2010). Speciation of Cd and Pb in dust emitted from sinter plant. Chemosphere, 78, 445-450. Seregin, I., Shpigun, L., & Ivanov, V. (2004). Distribution and toxic effects of cadmium and lead on maize roots. Russian Journal of Plant Physiology, 51, 525-533. Seth, C. S. (2012). A review on mechanisms of plant tolerance and role of transgenic plants in environmental clean-up. The Botanical Review, 78(1), 32-62. Shahid, M., Pinelli, E., Pourrut, B., & Dumat, C. (2014). Effect of organic ligands on lead-induced oxidative damage and enhanced antioxidant defense in the leaves of Vicia faba plants. Journal of Geochemical Exploration, 144, 282-289. Shahid, M., Pinelli, E., Pourrut, B., Silvestre, J., & Dumat, C. (2011). Lead-induced genotoxicity to Vicia faba L. roots in relation with metal cell uptake and initial speciation. Ecotoxicology and environmental safety, 74(1), 78-84. Shi, G., Xia, S., Ye, J., Huang, Y., Liu, C., & Zhang, Z. (2015). PEG-simulated drought stress decreases cadmium accumulation in castor bean by altering root morphology. Environmental and Experimental Botany, 111, 127-134. Srivastava, D., & Srivastava, N. (2023). Molecular Mechanism of Lead Toxicity and Tolerance in Plants, Lead Toxicity: Challenges and Solution. Springer, pp. 247-286. Tabelin, C., & Igarashi, T. (2009). Mechanisms of arsenic and lead release from hydrothermally altered rock. Journal of Hazardous Materials, 169(1-3), 980-990. Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International journal of chemical engineering, 2011. Venkatachalam, P., Jayalakshmi, N., Geetha, N., Sahi, S.V., Sharma, N.C., Rene, E.R., Sarkar, S.K.,& Favas, P.J. (2017). Accumulation efficiency, genotoxicity and antioxidant defense mechanisms in medicinal plant Acalypha indica L. under lead stress. Chemosphere, 171, 544-553. Wu, W., Wu, P., Yang, F., Sun, D. L., Zhang, D. X., & Zhou, Y. K. (2018). Assessment of heavy metal pollution and human health risks in urban soils around an electronics manufacturing facility. Science of the Total Environment, 630, 53-61. Xu, X., Zhou, Y., Mi, P., Wang, B., & Yuan, F. (2021). Salt-tolerance screening in Limonium sinuatum varieties with different flower colors. Scientific reports, 11(1), 14562. Zulfiqar, U., Farooq, M., Hussain, S., Maqsood, M., Hussain, M., Ishfaq, M., Ahmad, M., & Anjum, M.Z. (2019). Lead toxicity in plants: Impacts and remediation. Journal of Environmental Management, 250, 109557. | ||
آمار تعداد مشاهده مقاله: 184 تعداد دریافت فایل اصل مقاله: 190 |