تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,088,432 |
تعداد دریافت فایل اصل مقاله | 97,191,350 |
Gelation of gellan-stabilized oil-in-water emulsions using different gelling agents: fabrication and characterization | ||
Journal of Food and Bioprocess Engineering | ||
مقاله 11، دوره 6، شماره 2، بهمن 2023، صفحه 73-80 اصل مقاله (2.59 M) | ||
نوع مقاله: Original research | ||
شناسه دیجیتال (DOI): 10.22059/jfabe.2023.367966.1156 | ||
نویسندگان | ||
Hannaneh Hojatipour1؛ Gholamreza Askari* 2 | ||
1Department of Food Science and Technology, Faculty of Agriculture, University of Tehran, Karaj, Iran | ||
2Transfer Phenomena Laboratory (TPL), Department of Food Science, Technology and Engineering, Faculty of Biosystems Engineering, University of Tehran | ||
چکیده | ||
Gellan gum was exploited to modulate the stability of sesame oil-in-water emulsion and fabricated stable droplets with mean size of ̴ 9 μm till 30 days, then gelified by CaCl2 solution with final concentration of 55mM or 1% GDL. Enrichment with CaCl2 increased the amount of compact structures in gels in conjunction with decreasing WHC values and textural features modification. Gellan bundles as visualised by microscopic images conferred a remarkable influence to gel samples; enrichment with GDL or control gels increased the WHC value and formed less coarse networks. Based on Fourier transform infrared (FTIR) spectroscopy it was suggested that was no major changes in the functional groups of different gel samples, also according to the results of XRD analysis all the emulsion gels had an amorphous nature. The results indicated close relationships between physicochemical properties and microstructures of gellan-stabilized emulsion gels and would be of vital importance for extending the present knowledge about the preparation and properties of emulsion gels from gellan gum. | ||
کلیدواژهها | ||
Gellan gum؛ Emulsion gel؛ Functional properties؛ Textural attributes | ||
مراجع | ||
Ahuja, M., Singh, S., & Kumar, A. (2013). Evaluation of carboxymethyl gellan gum as a mucoadhesive polymer. International Journal of Biological Macromolecules, 53, 114-121. Alexander, A., Khichariya, A., Gupta, S., Patel, R. J., Giri, T. K., & Tripathi, D. K. (2013). Recent expansions in an emergent novel drug delivery technology: Emulgel. Journal of Controlled Release, 171(2), 122-132. Al-Shannaq, R., Farid, M., Al-Muhtaseb, S., & Kurdi, J. (2015). Emulsion stability and cross-linking of PMMA microcapsules containing phase change materials. Solar Energy Materials and Solar Cells, 132, 311-318. Anton, N., & Vandamme, T. F. (2009). The universality of low-energy nanoemulsification. International Journal of Pharmaceutics, 377(1), 142-147. Bouchemal, K., Briançon, S., Perrier, E., & Fessi, H. (2004). Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. International Journal of Pharmaceutics, 280 (1-2), 241-251. Budowski, P., & Markley, K. S. (1951). The chemical and physiological properties of sesame oil. Chemical Reviews, 48(1), 125-151. Chang, Y., & McClements, D. J. (2014). Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: influence of the oil phase, surfactant, and temperature. Journal of Agricultural and Food Chemistry, 62(10), 2306-2312. Davidov-Pardo, G., & McClements, D. J. (2015). Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chemistry, 167, 205- 212. Guo, Q., Cui, S. W., Wang, Q., Goff, H. D., & Smith, A. (2009). Microstructure and rheological properties of psyllium polysaccharide gel. Food Hydrocolloids, 23(6), 1542-1547. Guttoff, M., Saberi, A. H., & McClements, D. J. (2015). Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability. Food Chemistry, 171, 117-122. Han, F., Li, S., Yin, R., Liu, H., & Xu, L. (2008). Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: nanostructured lipid carriers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 315(1-3), 210-216. Horinaka, J. I., Kani, K., Hori, Y., & Maeda, S. (2004). Effect of pH on the conformation of gellan chains in aqueous systems. Biophysical Chemistry, 111(3), 223-227. Huibers, P. D., & Shah, D. O. (1997). Evidence for synergism in nonionic surfactant mixtures: enhancement of solubilization in water-in-oil microemulsions. Langmuir, 13(21), 5762-5765. Israelachvili, J. N. (2011). Intermolecular and surface forces. (3rd ed.). Elsevier science. Iurciuc, C. E., Savin, A., Lungu, C., Martin, P., & Popa, M. (2016). Gellan. Food applications. Cellulose Chemistry and Technology, 50, 1-13. Kalshetti, P. P., Rajendra, V. B., Dixit, D. N., & Parekh, P. P. (2012). Hydrogels as a drug delivery system and applications: a review. International Journal of Pharmacy and Pharmaceutical Sciences, 4(1), 1-7. Komaiko, J., & McClements, D, J. (2015). Food-grade nanoemulsion filled hydrogels formed by spontaneous emulsification and gelation: optical properties, rheology, and stability. Food Hydrocolloids, 46, 67-75. Kralova, I., & Sjöblom, J. (2009). Surfactants used in food industry: a review. Journal of Dispersion Science and Technology, 30(9), 1363-1383. Latreille, B., & Paquin, P. (1990). Evaluation of emulsion stability by centrifugation with conductivity measurements. Journal of Food Science, 55(6), 1666-1668. Liang, L., Line, V. L. S., Remondetto, G. E., & Subirade, M. (2010). In vitro release of α-tocopherol from emulsion-loaded β-lactoglobulin gels. International Dairy Journal, 20(3), 176-181. Lorenzo, G., Zaritzky, N., & Califano, A. (2013). Rheological analysis of emulsion-filled gels based on high acyl gellan gum. Food Hydrocolloids, 30(2), 672-680. Maltais, A., Remondetto, G. E., & Subirade, M. (2009). Soy protein cold-set hydrogels as controlled delivery devices for nutraceutical compounds. Food hydrocolloids, 23(7), 1647-1653. Mao, R., Tang, J., & Swanson, B. G. (2001). Water holding capacity and microstructure of gellan gels. Carbohydrate Polymers, 46(4), 365- 371. Marianecci, C., Marzio, L. D., Rinaldi, F., Esposito, S., Carafa, M. (2013). Niosoms. In I. F. Uchegbu, A. G. Schätzlein, W. P. Cheng, A. Lalatsa (Eds.), Fundamentals of Pharmaceutical Nanoscience (pp. 67–68). New York, USA: Springer. McClements, D, J. (2015). Food emulsions: principles, practices, and techniques. (3rd ed.). Boca Raton. CRC Press. (Chapter 1). McClements, D. J. (2011). Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter, 7(6), 2297-2316. McClements, D. J. (2012). Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 8(6), 1719- 1729. Moayedzadeh, S., Gunasekaran, S., & Madadlou, A. (2018). Spontaneous emulsification of fish oil at a substantially low surfactant-to-oil ratio: Emulsion characterization and filled hydrogel formation. Food Hydrocolloids, 82, 11-18. Morris, E. R., Nishinari, K., & Rinaudo, M. (2012). Gelation of gellan–a review. Food Hydrocolloids, 28(2), 373-411. Mun, S., Kim, Y. R., & McClements, D. J. (2015). Control of β-carotene bioaccessibility using starch-based filled hydrogels. Food Chemistry, 173, 454-461. Murillo-Martínez, M. M., & Tecante, A. (2014). Preparation of the sodium salt of high acyl gellan and characterization of its structure, thermal and rheological behaviors. Carbohydrate Polymers, 108, 313-320. Phillips, G. O., & Williams, P. A. (2009). Handbook of hydrocolloids. (2nd ed.). Elsevier. (Chapter 8). Pichot, R., Spyropoulos, F., & Norton, I. T. (2010). O/W emulsions stabilized by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration. Journal of Colloid and Interface Science, 352(1), 128-135. Poletto, F., Beck, R., Guterres, S., Polmann, A. (2011). Polymeric nanocapsules: Concepts and applications. In R. Beck, S. Guterres, A. Pohlmann (Eds.), Nanocosmetics and nanomedicines (pp. 57‒ 58), New York, USA: Springer. Qian, C., & McClements, D. J. (2011). Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocolloids, 25(5), 1000-1008. Singh, V. K., Pandey, P. M., Agarwal, T., Kumar, D., Banerjee, I., Anis, A., & Pal, K. (2016). Development of soy lecithin based novel selfassembled emulsion hydrogels. Journal of the mechanical behavior of biomedical materials, 55, 250-263. Sudhamani, S. R., Prasad, M. S., & Sankar, K. U. (2003). DSC and FTIR studies on gellan and polyvinyl alcohol (PVA) blend films. Food Hydrocolloids, 17(3), 245-250. Tang, C. H., Chen, L., & Foegeding, E. A. (2011). Mechanical and waterholding properties and microstructures of soy protein isolate emulsion gels induced by CaCl2, glucono-δ-lactone (GDL), and transglutaminase: Influence of thermal treatments before and/or after emulsification. Journal of Agricultural and Food Chemistry, 59(8), 4071-4077. Vilela, J. A. P., & da Cunha, R. L. (2016). High acyl gellan as an emulsion stabilizer. Carbohydrate Polymers, 139, 115-124. Wang, F., Wen, Y., & Bai, T. (2016). The composite hydrogels of polyvinyl alcohol–gellan gum-Ca2+ with improved network structure and mechanical property. Materials Science and Engineering: C, 69, 268-275. Wang, L., Dong, J., Chen, J., Eastoe, J., & Li, X. (2009). Design and optimization of a new self-nanoemulsifying drug delivery system. Journal of Colloid and Interface Science, 330(2), 443-448. Wang, Y., Li, D., Wang, L. J., & Adhikari, B. (2011). The effect of addition of flaxseed gum on the emulsion properties of soybean protein isolate (SPI). Journal of Food Engineering, 104(1), 56-62. Yamamoto, F., & Cunha, R. L. (2007). Acid gelation of gellan: effect of final pH and heat treatment conditions. Carbohydrate Polymers, 68(3), 517-527. Ahuja, M., Singh, S., & Kumar, A. (2013). Evaluation of carboxymethyl gellan gum as a mucoadhesive polymer. International Journal of Biological Macromolecules, 53, 114-121. Alexander, A., Khichariya, A., Gupta, S., Patel, R. J., Giri, T. K., & Tripathi, D. K. (2013). Recent expansions in an emergent novel drug delivery technology: Emulgel. Journal of Controlled Release, 171(2), 122-132. Al-Shannaq, R., Farid, M., Al-Muhtaseb, S., & Kurdi, J. (2015). Emulsion stability and cross-linking of PMMA microcapsules containing phase change materials. Solar Energy Materials and Solar Cells, 132, 311-318. Anton, N., & Vandamme, T. F. (2009). The universality of low-energy nanoemulsification. International Journal of Pharmaceutics, 377(1), 142-147. Bouchemal, K., Briançon, S., Perrier, E., & Fessi, H. (2004). Nano-emulsion formulation using spontaneous emulsification: solvent, oil and surfactant optimization. International Journal of Pharmaceutics, 280 (1-2), 241-251. Budowski, P., & Markley, K. S. (1951). The chemical and physiological properties of sesame oil. Chemical Reviews, 48(1), 125-151. Chang, Y., & McClements, D. J. (2014). Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: influence of the oil phase, surfactant, and temperature. Journal of Agricultural and Food Chemistry, 62(10), 2306-2312. Davidov-Pardo, G., & McClements, D. J. (2015). Nutraceutical delivery systems: resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chemistry, 167, 205- 212. Guo, Q., Cui, S. W., Wang, Q., Goff, H. D., & Smith, A. (2009). Microstructure and rheological properties of psyllium polysaccharide gel. Food Hydrocolloids, 23(6), 1542-1547. Guttoff, M., Saberi, A. H., & McClements, D. J. (2015). Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability. Food Chemistry, 171, 117-122. Han, F., Li, S., Yin, R., Liu, H., & Xu, L. (2008). Effect of surfactants on the formation and characterization of a new type of colloidal drug delivery system: nanostructured lipid carriers. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 315(1-3), 210-216. Horinaka, J. I., Kani, K., Hori, Y., & Maeda, S. (2004). Effect of pH on the conformation of gellan chains in aqueous systems. Biophysical Chemistry, 111(3), 223-227. Huibers, P. D., & Shah, D. O. (1997). Evidence for synergism in nonionic surfactant mixtures: enhancement of solubilization in water-in-oil microemulsions. Langmuir, 13(21), 5762-5765. Israelachvili, J. N. (2011). Intermolecular and surface forces. (3rd ed.). Elsevier science. Iurciuc, C. E., Savin, A., Lungu, C., Martin, P., & Popa, M. (2016). Gellan. Food applications. Cellulose Chemistry and Technology, 50, 1-13. Kalshetti, P. P., Rajendra, V. B., Dixit, D. N., & Parekh, P. P. (2012). Hydrogels as a drug delivery system and applications: a review. International Journal of Pharmacy and Pharmaceutical Sciences, 4(1), 1-7. Komaiko, J., & McClements, D, J. (2015). Food-grade nanoemulsion filled hydrogels formed by spontaneous emulsification and gelation: optical properties, rheology, and stability. Food Hydrocolloids, 46, 67-75. Kralova, I., & Sjöblom, J. (2009). Surfactants used in food industry: a review. Journal of Dispersion Science and Technology, 30(9), 1363-1383. Latreille, B., & Paquin, P. (1990). Evaluation of emulsion stability by centrifugation with conductivity measurements. Journal of Food Science, 55(6), 1666-1668. Liang, L., Line, V. L. S., Remondetto, G. E., & Subirade, M. (2010). In vitro release of α-tocopherol from emulsion-loaded β-lactoglobulin gels. International Dairy Journal, 20(3), 176-181. Lorenzo, G., Zaritzky, N., & Califano, A. (2013). Rheological analysis of emulsion-filled gels based on high acyl gellan gum. Food Hydrocolloids, 30(2), 672-680. Maltais, A., Remondetto, G. E., & Subirade, M. (2009). Soy protein cold-set hydrogels as controlled delivery devices for nutraceutical compounds. Food hydrocolloids, 23(7), 1647-1653. Mao, R., Tang, J., & Swanson, B. G. (2001). Water holding capacity and microstructure of gellan gels. Carbohydrate Polymers, 46(4), 365- 371. Marianecci, C., Marzio, L. D., Rinaldi, F., Esposito, S., Carafa, M. (2013). Niosoms. In I. F. Uchegbu, A. G. Schätzlein, W. P. Cheng, A. Lalatsa (Eds.), Fundamentals of Pharmaceutical Nanoscience (pp. 67–68). New York, USA: Springer. McClements, D, J. (2015). Food emulsions: principles, practices, and techniques. (3rd ed.). Boca Raton. CRC Press. (Chapter 1). McClements, D. J. (2011). Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter, 7(6), 2297-2316. McClements, D. J. (2012). Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 8(6), 1719- 1729. Moayedzadeh, S., Gunasekaran, S., & Madadlou, A. (2018). Spontaneous emulsification of fish oil at a substantially low surfactant-to-oil ratio: Emulsion characterization and filled hydrogel formation. Food Hydrocolloids, 82, 11-18. Morris, E. R., Nishinari, K., & Rinaudo, M. (2012). Gelation of gellan–a review. Food Hydrocolloids, 28(2), 373-411. Mun, S., Kim, Y. R., & McClements, D. J. (2015). Control of β-carotene bioaccessibility using starch-based filled hydrogels. Food Chemistry, 173, 454-461. Murillo-Martínez, M. M., & Tecante, A. (2014). Preparation of the sodium salt of high acyl gellan and characterization of its structure, thermal and rheological behaviors. Carbohydrate Polymers, 108, 313-320. Phillips, G. O., & Williams, P. A. (2009). Handbook of hydrocolloids. (2nd ed.). Elsevier. (Chapter 8). Pichot, R., Spyropoulos, F., & Norton, I. T. (2010). O/W emulsions stabilized by both low molecular weight surfactants and colloidal particles: The effect of surfactant type and concentration. Journal of Colloid and Interface Science, 352(1), 128-135. Poletto, F., Beck, R., Guterres, S., Polmann, A. (2011). Polymeric nanocapsules: Concepts and applications. In R. Beck, S. Guterres, A. Pohlmann (Eds.), Nanocosmetics and nanomedicines (pp. 57‒ 58), New York, USA: Springer. Qian, C., & McClements, D. J. (2011). Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: factors affecting particle size. Food Hydrocolloids, 25(5), 1000-1008. Singh, V. K., Pandey, P. M., Agarwal, T., Kumar, D., Banerjee, I., Anis, A., & Pal, K. (2016). Development of soy lecithin based novel selfassembled emulsion hydrogels. Journal of the mechanical behavior of biomedical materials, 55, 250-263. Sudhamani, S. R., Prasad, M. S., & Sankar, K. U. (2003). DSC and FTIR studies on gellan and polyvinyl alcohol (PVA) blend films. Food Hydrocolloids, 17(3), 245-250. Tang, C. H., Chen, L., & Foegeding, E. A. (2011). Mechanical and waterholding properties and microstructures of soy protein isolate emulsion gels induced by CaCl2, glucono-δ-lactone (GDL), and transglutaminase: Influence of thermal treatments before and/or after emulsification. Journal of Agricultural and Food Chemistry, 59(8), 4071-4077. Vilela, J. A. P., & da Cunha, R. L. (2016). High acyl gellan as an emulsion stabilizer. Carbohydrate Polymers, 139, 115-124. Wang, F., Wen, Y., & Bai, T. (2016). The composite hydrogels of polyvinyl alcohol–gellan gum-Ca2+ with improved network structure and mechanical property. Materials Science and Engineering: C, 69, 268-275. Wang, L., Dong, J., Chen, J., Eastoe, J., & Li, X. (2009). Design and optimization of a new self-nanoemulsifying drug delivery system. Journal of Colloid and Interface Science, 330(2), 443-448. Wang, Y., Li, D., Wang, L. J., & Adhikari, B. (2011). The effect of addition of flaxseed gum on the emulsion properties of soybean protein isolate (SPI). Journal of Food Engineering, 104(1), 56-62. Yamamoto, F., & Cunha, R. L. (2007). Acid gelation of gellan: effect of final pH and heat treatment conditions. Carbohydrate Polymers, 68(3), 517-527. | ||
آمار تعداد مشاهده مقاله: 163 تعداد دریافت فایل اصل مقاله: 100 |