- امیری، مجتبی؛ رحمانیان، مجید و غفاری، علی. (1392). بررسی وضعیت عوامل فرهنگی مؤثر بر مدیریت توسعه پایدار شهر تهران. مدیریت دولتی، 5 (4)، 1-19. doi:10.22059/jipa.2013.50386
- برزگر، صادق؛ دیوسالار، اسدالله؛ صفرعلیزاده، اسماعیل و فنی، زهره. (1397). تحلیل شاخصهای پایداری کالبدی در شهرهای کوچک (مطالعه موردی: شهرهای کوچک استان مازندران). فصلنامه فضای جغرافیایی، 18 (61)، 161-180.
- برقی، اسماعیل. (1397). سوادآموزی عنصر کلیدی توسعه پایدار. نشریه راهبرد توسعه، 14 (4)، 187-210.
- سپهوند، رضا و عارفنژاد، محسن. (1392). اولویتبندی شاخصهای توسعه پایدار شهری با رویکرد تجزیهوتحلیل سلسله مراتبی گروهی مطالعه موردی در شهر اصفهان. مطالعات ساختار و کارکرد شهری، 1(1)، 43-59. dor: 20.1001.1.20085362.1391.23.4.12.6
- عباسی، محمدباقر؛ توده فلاح، معصومه؛ خطیبی، آمنه و صفاکیش، محدثه (1397). نگاهی به ساخت سنی و وضع مشارکت در بازار کار مردان و زنان در معرض ازدواج و طلاق از دریچه سرشماری، فصلنامه جمعیت، 25(105 و 106)، 57-76.
- علیپور، علیرضا. (1383). آشنایی با نظریه گراف. تهران، چاپ اول، انتشارات فاطمی.
- محمدزاده، رحمت. (1394). بررسی تطبیقی الگوی مجتمعهای مسکونی ویلائی و آپارتمانی (مطالعه موردی شهر جدید سهند). نشریه جغرافیا و برنامهریزی، 19(54)، 279-302. doi: 20160515142421-9918-210
- محمودی، محمدرضا؛ اسلامیان، سعید؛ گوهری، علیرضا و طحانیان، معین (1401). بررسی عملکرد شبکههای عصبی گازی در خوشهبندی هیدرولوژیک. مجله مدیریت آب و آبیاری، 12(2)، 359-373. doi:10.22059/JWIM.2022.339537.972
- موسوی، میرسعید. (1397). بررسی سطح تحقق توسعه پایدار شهر تبریز بر اساس شاخص ردپای بومشناختی. فصلنامه جغرافیا و مطالعات محیطی، 7 (27)، 61-76.
- نصیری دارانی، شهربانو. (1401). تحلیل حساسیت روش ارزیابی چند معیاره مکانی به تغییر توابع استانداردسازی و وزن معیارها (مطالعه موردی: سنجش وضعیت پایداری توسعه در شهر اصفهان). پایاننامه کارشناسی ارشد، دانشکده علوم زمین، دانشگاه شهید بهشتی تهران.
- نصیری هندخاله، اسماعیل؛ حسینی فر، سید محسن و احمدی، علی. (1395). تأثیر مهاجرت بر توسعه شهری با استفاده از مدل SWOT (موردمطالعه: شهر بابل)، دو فصلنامه پژوهشهای بومشناسی شهری، 7 (2)، 55-66. dor: 20.1001.1.25383930.1395.7.14.4.6
- Abbasi, M., Tude Fallah, M.‚ Khatibi, A.‚ & Safakish, M. (2017). Looking at the structure of age and participation in the labor market of men and women subject to marriage and divorce through the lens of the census. Journal Population, 20(5)‚ 57-76 [In Persian].
- Aldegheishem, A. (2014). Evaluating the urban sustainable development on the basis of AHP: A case study for Riyadh city. Journal of sustainable development, 7(2), 113. doi: 10.5539/jsd.v7n2p113.
- Alipour, A (1383). Familiarity with graph theory. Tehran, first edition, Fatemi Publications. [In Persian].
- Amiri, M., Rahmanian, M., & Ghaffari, A. (2012). Investigating the status of cultural factors affecting the management of sustainable development in Tehran. Public Administration, 5(4), pp. 1-19. doi: 10.22059/jipa.2013.50386. [In Persian].
- Andrienko, G., Andrienko, N., Bak, P., Bremm, S., Keim, D., von Landesberger, T., & Schreck, T. (2010). A framework for using self-organising maps to analyse spatio-temporal patterns, exemplified by analysis of mobile phone usage. Journal of Location based services, 4(3-4), 200-221. doi: 10.1080/17489725.2010.532816.
- Barghi, E (2017). Literacy the key element of sustainable development. Journal of Development Strategy, 14(4)‚ 187-210. [In Persian].
- Barzegar, S., Divsalar, A., Safaralizadeh, I., & Fanni, Z. (2017). The Analysis of indicators of physical sustainability in small cities, (case study: small cities of Mazandaran province). Journal of Geographical Space, 18(61), pp. 161-180. [In Persian].
- Grubesic, T. H., Wei, R., & Murray, A. T. (2014). Spatial clustering overview and comparison: Accuracy, sensitivity, and computational expense. Annals of the Association of American Geographers, 104(6), 1134-1156. doi: 10.1080/00045608.2014.958389.
- Hagenauer, J. (2015). Clustering contextual neural gas: a new approach for spatial planning and analysis tasks. Computational approaches for urban environments, 77-94. doi.org/10.1007/978-3-319-11469-9_4.
- Hagenauer, J., & Helbich, M. (2013). Contextual neural gas for spatial clustering and analysis. International Journal of Geographical Information Science, 27(2), 251-266. doi:10.1080/13658816.2012.667106.
- Hagenauer, J., & Helbich, M. (2016). SPAWNN: A Toolkit for SPatial Analysis with Self‐Organizing Neural Networks. Transactions in GIS, 20(5), 755-774. https://doi.org/10.1111/tgis.12180.
- Hagenauer, J., & Helbich, M. (2018). The Application of the SPAWNN Toolkit to the Socioeconomic Analysis of Chicago, Illinois. Trends in Spatial Analysis and Modelling: Decision-Support and Planning Strategies, 75-90. doi: 10.1007/978-3-319-52522-8_5
- Han, J., Kamber, M., & Mining, D. (2006). Concepts and techniques. Morgan kaufmann, 340, 94104-3205.
- Hsu, K. C., & Li, S. T. (2010). Clustering spatial–temporal precipitation data using wavelet transform and self-organizing map neural network. Advances in Water Resources, 33(2), 190-200. doi: 10.1016/j.advwatres.2009.11.005.
- Jain, A. K., Murty, M. N., & Flynn, P. J. (1999). Data clustering: a review. ACM computing surveys (CSUR), 31(3), 264-323. doi: 10.1145/331499.331504.
- Kasabov, N. K. (1996). Foundations of neural networks, fuzzy systems, and knowledge engineering. Marcel Alencar.
- Kaufman, L., & Rousseeuw, P. J. (2009). Finding groups in data: an introduction to cluster analysis. John Wiley & Sons.
- Labusch, K., Barth, E., & Martinetz, T. (2009). Sparse coding neural gas: Learning of overcomplete data representations. Neurocomputing, 72, 1547-1555. https://doi.org/10.1016/j.neucom.2008.11.027.
- Lez’er, V., Semerianova, N., Kopytova, A., & Truntsevsky, Y. (2019). Youth entrepreneurship as a basis for sustainable urban development: social and legal aspect. In E3S Web of Conferences (Vol. 110, p. 02093). EDP. doi: 10.1051/e3sconf/201911002093.
- Mahmoudi, M., Islamian, S., Gohari, A., & Tahanian, M (2021). Investigation of the performance of neural gas networks in hydrological clustering. Journal of Water and Irrigation Management, 12(2), 359-373. doi:10.22059/JWIM.2022.339537.972. [In Persian].
- Marino, A. (2018). Graph Clustering Algorithms. Ph.D. Course on Graph Mining Algorithms, Universit`a di Pisa.
- Martinetz, T. (1993). Competitive Hebbian learning rule forms perfectly topology preserving maps. In ICANN’93: Proceedings of the International Conference on Artificial Neural Networks Amsterdam, The Netherlands 13–16 September 1993 3 (pp. 427-434). Springer London. doi: 10.1007/978-1-4471-2063-6_104.
- Martinetz, T. M., Berkovich, S. G., & Schulten, K. J. (1993). Neural-gas' network for vector quantization and its application to time-series prediction. IEEE transactions on neural networks, 4(4), 558-569. doi: 10.1109/72.238311.
- Martinetz, T., & Schulten, K. (1991). A" neural-gas" network learns topologies. Artificial Neural Networks.
- Miller, H. J. (2010). The data avalanche is here. Shouldn’t we be digging?. Journal of Regional Science, 50(1), 181-201. doi/abs/10.1111/j.1467-9787.2009.00641.
- Mohammadzadeh, R. (2014). Compatibility Survey of Detached and Apartment Residential Complexes Patternin Sahand New Town. Journal of Geography and Planning, 19(54)‚ 279-302. doi: 20160515142421-9918-210 [In Persian].
- Mousavi, M. (2017). Evaluation of the sustainable development level in Tabriz city based on ecological footprint index. Journal of Geography and Environmental Studies, 7(27)‚ 61-76 [In Persian].
- Nasiri Darani‚ Sh. (2022). Sensitivity analysis of spatial multi -criteria evaluation method to change the standardization functions and weight of criteria (Case study: assessing the sustainability of development in Isfahan). MSc Thesis. Shahid Beheshti University [In Persian].
- Nasiri Hendeh Khaleh, E., Hoseinifar, S. M., & Ahmadi, A. (2017). The Impact of Migration on Urban Development Using SWOT, Case study: Babol city. Journal of Urban Ecology Researches, 7(14), 55-66. dor: 20.1001.1.25383930.1395.7.14.4.6 [In Persian].
- Nielsen, M. A. (2015). Neural networks and deep learning (Vol. 25, pp. 15-24). San Francisco, CA, USA: Determination press.
- Openshaw, S. (1999, July). Geographical data mining: key design issues. In Proceedings of Geo Computation (Vol. 99). doi: 10.1007/978-3-642-17316-5_55.
- Patel, P., & Patel, A. (2021, June). Use of sustainable green materials in construction of green buildings for sustainable development. In IOP Conference Series: Earth and Environmental Science (Vol. 785, No. 1, p. 012009). IOP Publishing. doi: 10.1088/1755-1315/785/1/012009.
- Rodrigues, M., & Franco, M. (2020). Measuring the urban sustainable development in cities through a Composite Index: The case of Portugal. Sustainable Development, 28(4), 507-520. doi: 10.1002/sd.2005.
- Sepahvand, R.‚ & Arifnejad, M. (2012). Prioritization of indicators of urban permanent development with a group analytic hierarchy proces (Case study: in Isfahan city). Journal of Urban Structure and Function studies, 1(1)‚ 43-59. dor: 20.1001.1.20085362.1391.23.4.12.6 [In Persian].
- Sheela, K. G., & Deepa, S. N. (2012, August). An efficient hybrid neural network model in renewable energy systems. In 2012 IEEE International Conference on Advanced Communication Control and Computing Technologies (ICACCCT) (pp. 359-361). IEEE. doi: 10.1109/icaccct.2012.6320802.
- Stefanovic, P., & Kurasova, O. (2011). Visual analysis of self-organizing maps. Nonlinear Analysis: Modelling and Control, 16(4), 488-504. doi:10.15388/NA.16.4.14091.
- Sui, D. Z. (2004). Tobler's first law of geography: A big idea for a small world?. Annals of the Association of American Geographers, 94(2), 269-277. doi:10.1111/j.1467-8306.2004.09402003.
- Tobler, Waldo R. A. (1970). computer movie simulating urban growth in the Detroit region. Economic geography, 46, no. sup1, 234-240. doi.org/10.2307/143141.
- Van Dongen, S. M. (2000). Graph clustering by flow simulation (Doctoral dissertation).
- Wadhwa, L. C., (2000). Sustainable transportation: the key to sustainable cities, doi: 10.2495/URS000301.
- Wankhede, S. B. (2014). Analytical study of neural network techniques: SOM, MLP and classifier-a survey. IOSR J. Comput. Eng. Ver. VII, 16(3), 2278-661. doi:10.9790/0661-16378692
- Yuan, M., Buttenfield, B., Gahegan, M., & Miller, H. (2004). Geospatial data mining and knowledge discovery. A research agenda for geographic information science, 3, 365.
- Zhang, J., & Fang, H. (2012). Using Self-Organizing Maps to visualize, filter and cluster multidimensional bio-omics data. Applications of Self-Organizing Maps, 181-204. doi:10.5772/51702.
|