تعداد نشریات | 161 |
تعداد شمارهها | 6,573 |
تعداد مقالات | 71,032 |
تعداد مشاهده مقاله | 125,502,449 |
تعداد دریافت فایل اصل مقاله | 98,766,548 |
اثر پوششدهی بذر گوجهفرنگی با اسپور قارچ اندوفیتAcrophialophora jodhpurensis روی رشد گیاه و کنترل پوسیدگی طوقه و ریشه ناشی ازRhizoctonia solani | ||
کنترل بیولوژیک آفات و بیماری های گیاهی | ||
دوره 11، شماره 2، دی 1401، صفحه 95-113 اصل مقاله (2.05 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jbioc.2024.371151.329 | ||
نویسندگان | ||
ضحا درودی1؛ پریسا طاهری* 2؛ سعید طریقی1 | ||
1گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه فردوسی مشهد، مشهد، ایران | ||
2گروه گیاه پزشکی، دانشکده کشاورزی، دانشگاه فردوسی مشهد مشهد ایران | ||
چکیده | ||
پوششدهی بذر با عوامل آنتاگونیست سبب حفاظت بذور و گیاهان در برابر بیمارگرها میشود. در این مطالعه، اثر پوششدهی بذر گوجهفرنگی با قارچ اندوفیتAcrophialophora jodhpurensis علیه بیمارگرRhizoctonia solani در شرایط گلخانه مورد مطالعه قرار گرفت. پوششدهی بذور با اسپورهای A. jodhpurensis همراه با یک درصد ساکارز خوراکی، نیم درصد کربوکسیمتیلسلولز و نیم درصد ملاس به عنوان چسباننده انجام شد. بررسی گلخانهای نشان داد که در 30 روز پس از کشت، ریشه گیاهان توسط قارچ به خوبی کلونیزه میشود. میزان کلونیزاسیون ریشهها برای تیمارهای ساکارز خوراکی و کربوکسیمتیلسلولز، 55/80% و برای تیمار ملاس 44/69% بود. این قارچ مفید منجر به کاهش معنیداری در شاخص بیماری R. solani روی قرصهای برگی و نهالهای گوجهفرنگی در مقایسه با شاهد شد. همچنین تولید ساختارهای آلودهکننده بیمارگر از قبیل آپرسوریومهای لوبدار و بالشتکآلودهکننده در گیاهان تیمار شده در مقایسه با شاهد کاهش یافت. فاکتورهای رشدی گیاه از قبیل وزن تر، خشک و طول اندام هوایی و ریشه گیاهان تیمار شده با این قارچ اندوفیت در مقایسه با گیاهان شاهد فاقد تیمار به طور معنیداری افزایش یافت. در میان مواد مختلف استفاده شده به عنوان چسباننده، ساکارز بیشترین تاثیر را در کاهش شاخص بیماری و افزایش فاکتورهای رشدی گیاه داشت. بهطوریکه در گیاهان تیمار شده با ساکارز، A. jodhpurensis وR. solani شاخص بیماری به طور معنیداری در مقایسه با گیاهانی که فقط باR. solani مایه زنی شده بودند کاهش یافت. بنابراین، پوششدهی بذور با قارچ اندوفیتA. jodhpurensis و چسبانندهها، مخصوصاً ساکارز خوراکی، میتواند برای حفاظت گیاه گوجهفرنگی علیه این بیمارگر مخرب مورد استفاده قرار گیرد. | ||
کلیدواژهها | ||
ساختارهای آلودهکننده؛ شاخص بیماری؛ فاکتورهای رشدی گیاه؛ مواد چسباننده؛ Solanum lycopersicum | ||
مراجع | ||
Achatz, B., von Rüden, S., Andrade, D., Neumann, E., Pons-Kühnemann, J., Kogel, K. H., Franken, P., & Waller, F. (2010). Root colonization by Piriformospora indica enhances grain yield in barley under diverse nutrient regimes by accelerating plant development. Plant and Soil, 333(1), 59-70. https://doi.org/10.1007/s11104-010-0319-0. Ajayi‐Oyetunde, O. O., & Bradley, C. A. (2018). Rhizoctonia solani: taxonomy, population biology and management of rhizoctonia seedling disease of soybean. Plant Pathology, 67(1), 3-17. https://doi.org/10.1111/ppa.12733. Azadi, N., Shirzad, A., & Mohammadi, H. (2016). A study of some biocontrol mechanisms of Beauveria bassiana against Rhizoctonia disease on tomato. Acta Biologica Szegediensis, 60(2), 119-127. Bacon, C. W., & White, J. F. (2016). Functions, mechanisms and regulation of endophytic and epiphytic microbial communities of plants. Symbiosis, 68(1), 87-98. https://doi.org/10.1007/s13199-015-0350-2. Cardarelli, M., Rouphael, Y., De Pascale, S., Bonini, P., & Colla, G. (2019). Seed treatment with endophytic fungi enhances yield and nutritional quality of seed-propagated artichokes. Acta Horticulturae 1284: X International Symposium on Artichoke, Cardoon and Their Wild Relatives, 1284, 57-64. https://doi.org/10.17660/ActaHortic.2020.1284.7. Carling, D. E., Kuninaga, S., & Brainard, K. A. (2002). Hyphal anastomosis reactions, rDNA-internal transcribed spacer sequences, and virulence levels among subsets of Rhizoctonia solani anastomosis group-2 (AG-2) and AG-BI. Phytopathology, 92(1), 43-50. https://doi.org/10.1094/PHYTO.2002.92.1.43. Chang, I. P. (1968). Biological control of seedling blight of corn by coating kernels with antagonistic microorganisms. Phytopathology, 58, 1395-1401. Colla, G., Rouphael, Y., Di Mattia, E., El‐Nakhel, C., & Cardarelli, M. (2015). Co‐inoculation of Glomus intraradices and Trichoderma atroviride acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. Journal of the Science of Food and Agriculture, 95(8), 1706-1715. https://doi.org/10.1002/jsfa.6875. Daroodi, Z., Taheri, P., & Tarighi, S. (2021). Direct antagonistic activity and tomato resistance induction of the endophytic fungus Acrophialophora jodhpurensis against Rhizoctonia solani. Biological Control, 160, 104696. https://doi.org/10.1016/j. biocontrol.2021.104696. Daroodi, Z., Taheri, P., & Tarighi, S. (2022). Acrophialophora jodhpurensis: an endophytic plant growth promoting fungus with biocontrol effect against Alternaria alternata. Frontiers in Plant Science, 13. https://doi.org/10.3389/fpls.2022.984583. Dawar, S., Hayat, S., Anis, M., & Zaki, M. J. (2008). Effect of seed coating material in the efficacy of microbial antagonists for the control of root rot fungi on okra and sunflower. Pakistan Journal of Botany, 40(3), 1269-1278. de Camargo, F. R. T., Silva, I. L., Barros, P. J. R., Ascheri, D. P. R., Rodovalho, R. S., Bellizzi, N. C., Ascheri, J. L. R., Teixeira, I. R., Devilla, I. A., & de Campos, A. J. (2017). Physiological quality of soybean seeds treated with carboxymethyl cellulose and fungicide. American Journal of Plant Sciences, 8(11), 2748. https://doi.org/10.4236/ajps.2017.811185. De Curtis, F., Lima, G., Vitullo, D., & De Cicco, V. (2010). Biocontrol of Rhizoctonia solani and Sclerotium rolfsii on tomato by delivering antagonistic bacteria through a drip irrigation system. Crop Protection, 29(7), 663-670. https://doi.org/10.1016/j.cropro.2010.01.012. Dingle, J., & Mcgee, P. A. (2003). Some endophytic fungi reduce the density of pustules of Puccinia recondita f. sp. tritici in wheat. Mycological Research, 107(3), 310-316. https://doi.org/10.1017/S0953756203007512. Dipietro, A. (1995). Allelopathy: Fungal antibiosis in biocontrol of plant disease. American Chemical Society. Edward, J. C. (1959). A new genus of the Moniliaceae. Mycologia, 51(6), 781–786. https://doi.org/10.1080/00275514.1959.12024860. Fakhro, A., Andrade-Linares, D. R., von Bargen, S., Bandte, M., Büttner, C., Grosch, R., & Franken, P. (2010). Impact of Piriformospora indica on tomato growth and on interaction with fungal and viral pathogens. Mycorrhiza, 20, 191–200. https://doi.org/10.1007/s00572-009-0279-5. Gajera, H. P., Hirpara, D. G., Katakpara, Z. A., Patel, S. V., & Golakiya, B. A. (2016). Molecular evolution and phylogenetic analysis of biocontrol genes acquired from SCoT polymorphism of mycoparasitic Trichoderma koningii inhibiting phytopathogen Rhizoctonia solani Kuhn. Infection, Genetics and Evolution, 45, 383-392. https://doi.org/10.1016/j.meegid.2016.09.026. González-Guzmán, A., Sánchez-Rodríguez, A. R., Quesada-Moraga, E., del Campillo, M. C., & Yousef-Yousef, M. (2021). Optimizing wheat seed treatment with entomopathogenic fungi for improving plant growth at early development stages. Spanish Journal of Agricultural Research, 19(4), e1004-e1004. https://doi.org/10.5424/sjar/2021194-17120. Hossain, M. M., Sultana, F., & Hyakumachi, M. (2017). Role of ethylenesignalling in growth and systemic resistance induction by the plant growthpromoting fungus Penicillium viridicatum in Arabidopsis. Journal of Phytopathology, 165l, 432–441. https://doi.org/10.1111/jph.12577. Hubbard, J. P., Harman, G. E., & Eckenrode, C. J. (1982). Interaction of a biological control agent, Chaetomium globosum, with seed coat microflora. Canadian Journal of Microbiology, 28(4), 431-437. https://doi.org/10.1139/m82-065. Jaber, L. R. (2018). Seed inoculation with endophytic fungal entomopathogens promotes plant growth and reduces crown and root rot (CRR) caused by Fusarium culmorum in wheat. Planta, 248, 1525-1535. https://doi.org/10.1007/s00425-018-2991-x. Khan, A. L., Waqas, M., Hussain, J., Al-Harrasi, A., Hamayun, M., & Lee, I. J. (2015). Phytohormones enabled endophytic fungal symbiosis improve aluminum phytoextraction in tolerant Solanum lycopersicum: An examples of Penicillium janthinellum LK5 and comparison with exogenous GA3. Journal of Hazardous Materials, 295, 70–78. https://doi.org/10.1016/j.jhazmat.2015. 04.008. Kommedahl, T., & Mew, I. C. (1975). Biocontrol of corn root infection in the field by seed treatment with antagonists. Phytopathology, 65, 296–300. Lugtenberg, B. J. J., Caradus, J. R., & Johnson, L. J. (2016). Fungal endophytes for sustainable crop production. FEMS Microbiology Ecology, 92 (12). https://doi.org/10.1093/femsec/fiw194. Ma, Y., Látr, A., Rocha, I., Freitas, H., Vosátka, M., & Oliveira, R. S. (2019). Delivery of inoculum of Rhizophagus irregularis via seed coating in combination with Pseudomonas libanensis for cowpea production. Agronomy, 9 (1), 33. https://doi.org/10.3390/agronomy9010033. Mahmood, A., Turgay, O. C., Farooq, M., & Hayat, R. (2016). Seed biopriming with plant growth promoting rhizobacteria: a review. FEMS Microbiology Ecology, 92, fiw112. https://doi.org/10.1093/femsec/fiw112. Mantzoukas, S., Papantzikos, V., Katsogiannou, S., Papanikou, A., Koukidis, C., Servis, D., Eliopoulos, P., & Patakioutas, G. (2023). Biostimulant and bioinsecticidal effect of coating cotton seeds with endophytic Beauveria bassiana in semi-field conditions. Microorganisms, 11(8), 2050. https://doi.org/10.3390/microorganisms11082050. Minaxi, L. N., Yadav, R. C., & Saxena, J. (2012). Characterisation of multifaceted Bacillus sp. RM-2 for its use as plant growth promoting bioinoculant for crops grown in semi arid deserts. Applied Soil Ecology, 59, 124–135. https://doi.org/10.1016/j.apsoil.2011.08.001. Misawa, T., & Kuninaga, S. (2010). The first report of tomato foot rot caused by Rhizoctonia solani AG-3 PT and AG-2-Nt and its host range and molecular characterization. Journal of General Plant Pathology, 76 (5), 310–319. https://doi.org/10.1007/s10327-010-0261-2. Morkunas, I., & Ratajczak, L. (2014). The role of sugar signaling in plant defense responses against fungal pathogens. Acta Physiologiae Plantarum, 36, 1607–1619. https://doi.org/10.1007/s11738-014-1559-z. Mousa, W. K., & Raizada, M. N. (2013). The diversity of anti-microbial secondary metabolites produced by fungal endophytes: an interdisciplinary perspective. Frontiers in Microbiology, 4, 65. https://doi.org/10.3389/fmicb.2013.0006. Nefzi, A., Abdallah, R. A. B., Jabnoun-Khiareddine, H., Ammar, N., & Daami-Remadi, M. (2019). Ability of endophytic fungi associated with Withania somnifera L. to control Fusarium Crown and root rot and to promote growth in tomato. Brazilian Journal of Microbiology, 50, 481–494. https://doi.org/10.1007/s42770-019-00062-w. Nikraftar, F., Taheri, P., Rastegar, M. F., & Tarighi, S. (2013). Tomato partial resistance to Rhizoctonia solani involves antioxidative defense mechanisms. Physiological and Molecular Plant Pathology, 81, 74-83. https://doi.org/10.1016/j.pmpp.2012.11.004. Padhi, P. P., Pattanayak, S. K. (2018). Effect of lime coating and molybdenum seed treatment on productivity and nutrient uptake of different pulses grown in Alfisols. International Journal of Current Microbiology and Applied Sciences, 7, 1417–1426. Petrisor, C., Paica, A., & Burnichi, F. (2019). Physiological and growth response of tomato plants after Trichoderma spp. seed treatments. Studia Universitatis Babes-Bolyai, Chemia, 64(2, Tom II), 567-577. https://doi.org/10.24193/subbchem.2019.2.49. Pourmahdi, A., & Taheri, P. (2014). Genetic diversity of Thanatephorus cucumeris infecting tomato in Iran. Journal of Phytopathology, 163(1), 19-32. https://doi.org/10.1111/jph.12276. Rivas-Franco, F., Hampton, J. G., Altier, N. A., Swaminathan, J., Rostás, M., Wessman, P., Saville, D. J., Jackson, T. A., Jackson, M. A., & Glare, T. R. (2020). Production of microsclerotia from entomopathogenic fungi and use in maize seed coating as delivery for biocontrol against Fusarium graminearum. Frontiers in Sustainable Food Systems, 4, 606828. https://doi.org/10.3389/fsufs.2020.606828. Rocha, I., Ma, Y., Souza-Alonso, P., Vosátka, M., Freitas, H., & Oliveira, R. S. (2019). Seed coating: a tool for delivering beneficial microbes to agricultural crops. Frontiers in plant science, 10, 1357. https://doi.org/10.3389/fpls.2019.01357. Ruiz-de-La-Cruz, G., Aguirre-Mancilla, C. L., Godínez-Garrido, N. A., Osornio-Flores, N. M., & Torres-Castillo, J. A. (2017). Chitosan mixed with beneficial fungal conidia or fungicide for bean (Phaseolus vulgaris L.) seed coating. Interciencia, 42, 307–312. Solanki, M. K., Robert, A. S., Singh, R. K., Kumar, S., Pandey, A. K., Srivastava, A. K., & Arora, D. K. (2012). Characterization of mycolytic enzymes of Bacillus strains and their bio-protection role against Rhizoctonia solani in tomato. Current Microbiology, 65 (3), 330–336. https://doi.org/10.1007/s00284-012-0160-1. Soytong, K. (1992). Antagonism of Chaetomium cupreum to Pyricularia oryzae. Journal of Plant protection in the tropics, 9(1), 17-23. Su, Y. Y., Qi, Y. L., & Cai, L. (2012). Induction of sporulation in plant pathogenic fungi. Mycology, 3(3), 195-200. https://doi.org/10.1080/21501203.2012.719042. Sujatha, H. S., Murali, M., & Amruthesh, K. N. (2021). Fungal Endophytes as Growth Promoters and Inducers of Resistance in Tomato (Lycopersicon esculentum Mill.) against Alternaria Solani. International Journal of Life science and Pharma Research, 11(2), L227-235. https://doi.org/10.22376/ijpbs/lpr.2021.11.2.L227-235. Taheri, P., & Tarighi, S. (2010). Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. Journal of plant physiology, 167(3), 201-208. https://doi.org/10.1016/j.jplph.2009.08.003. Taheri, P., & Tarighi, S. (2012). The role of pathogenesis-related proteins in the tomato-Rhizoctonia solani interaction. Journal of Botany. https://doi.org/10.1155/2012/137037. Taheri, P., Gnanamanickam, S., & Höfte, M. (2007). Characterization, genetic structure, and pathogenicity of Rhizoctonia spp. associated with rice sheath diseases in India. Phytopathology, 97(3), 373-383. https://doi.org/10.1094/PHYTO-97-3-0373. Taylor, I. B. (1986). The tomato crop: Biosystematics of the tomato. Springer. Netherlands. Thines, E., Anke, H., & Weber, R. W. S. S. (2004). Fungal secondary metabolites as inhibitors of infection-related morphogenesis in phytopathogenic fungi. Mycological research, 108, 14–25. https://doi.org/10.1017/S0953756203008943. Tucci, M., Ruocco, M., De Masi, L., De Palma, M., & Lorito, M. (2011). The beneficial effect of Trichoderma spp. on tomato is modulated by the plant genotype. Molecular Plant Pathology, 12, 341 354. https://doi.org/10.1111/j.1364-3703.2010.00674. Vierheilig, H., Coughlan, A. P., Wyss, U., & Piche, Y. (1998). Ink and Vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Applied and environmental microbiology, 64(12), 5004-5007. https://doi.org/10.1128/AEM.64.12.5004-5007.1998. Vilich, V., Dolfen, M., & Sikora, R. A. (1998). Chaetomium spp. colonization of barley following seed treatment and its effect on plant growth and Erysiphe graminis f. sp. hordei disease severity. Journal of Plant Diseases and Protection, 105(2), 130-139. Waller, F., Achatz, B., Baltruschat, H., Fodor, J., Becker, K., Fischer, M., & Kogel, K. H. (2005). The endophytic fungus Piriformospora indica reprograms barley to salt-stress tolerance, disease resistance, and higher yield. Proceedings of the National Academy of Sciences, 102, 13386–13391. https://doi.org/10.1073/pnas.0504423102. Wen, K., Seguin, P., Arnaud, M. S., & Jabaji-Hare, S. (2005). Real-Time quantitative RT-PCR of defense associated gene transcripts of Rhizoctonia solani infected bean seedlings in response to inoculation with a nonpathogenic binucleate Rhizoctonia isolate. Phytopathology, 95(4), 345-353. https://doi.org/10.1094/PHYTO-95-0345. Yu, H., Zhang, L., Li, L., Zheng, C., Guo, L., Li, W., Sun, P., & Qin, L. (2010). Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiological Research, 165(6), 437-449. https://doi.org/10.1016/j.micres.2009.11.009. Zhang, Y., Chen, F. S., Wu, X. Q., Luan, F. G., Zhang, L. P., Fang, X. M., & Ye, J. R. (2018). Isolation and characterization of two phosphate-solubilizingfungi from rhizosphere soil of moso bamboo and their functional capacities when exposed to different phosphorus sources and pH environments. PLoS One, 13, e0199625. https://doi.org/10.1371/journal.pone.0199625. Zhou, J., Deng, B., Zhang, Y., Cobb, A. B., & Zhang, Z. (2017). Molybdate in rhizobial seedcoat formulations improves the production and nodulation of alfalfa. PLoS One, 12 (1), e0170179. https://doi.org/10.1371/journal.pone.0170179. | ||
آمار تعداد مشاهده مقاله: 208 تعداد دریافت فایل اصل مقاله: 198 |