تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,117,588 |
تعداد دریافت فایل اصل مقاله | 97,223,161 |
Lime juice adulteration detection by spectroscopy and machine learning | ||
Journal of Food and Bioprocess Engineering | ||
مقاله 8، دوره 6، شماره 2، بهمن 2023، صفحه 56-62 اصل مقاله (2.27 M) | ||
نوع مقاله: Original research | ||
شناسه دیجیتال (DOI): 10.22059/jfabe.2023.364398.1151 | ||
نویسندگان | ||
zahra alaei roozbahani* 1؛ Mohsen Labbafi* 2؛ Ali i Aghakhan2؛ Saeed Izadi3 | ||
11-Department of Food Science and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran 2-Department of Food Science and Technology Standard Research Institute (SRI),Karaj, Iran, z.alaei@standrd.ac.ir | ||
21Department of Food Science and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran | ||
3Simon Fraser University, Canada | ||
چکیده | ||
Fruit juices, and especially lime juice, belong to the most targeted food commodities for fraud. Therefore, reliable and cost-effective analytical methodologies need to be developed to guarantee lime juice authenticity and quality. The manifestation of machine learning techniques (MLT) has paved the way for fast and reliable processing and analysis of food and juice data for more effective use of inexpensive, readily available, and easy-to-use equipment such as UV/Vis spectrometers for quality control. The study aimed to investigate UV/Vis spectrometry and MLT to detect at least 10% of water, acid, and sugar added to lime juice. For this purpose, 26 lime samples, including Mexican and Persian lime, were collected from the orchards of four main lime-cultivated areas in Iran to prepare pure lime juice samples (as authentic samples). To investigate adulterated lime juice, four types of treatment were defined by adding acid, sugar, a mix of acid and sugar solution, and water at different volume proportions (10, 20, 30, 40, and 50 % v/v) to pure lime juice samples. Each treatment was repeated eight times. The absorption rate of different adulterated and pure lime juice samples was measured at different wavelengths in the 210–550 nm range. The evaluation results of different MLTs showed that the accuracy of separating samples using absorption data by decision tree (DT), k-nearest neighbor (k-NN), random forest (RF), multilayer perceptron (MLP), and support vector machine (SVM) were 75%, 79%, 80%, 87%, and 92%, respectively. SVM had the highest level of accuracy in separating adulterated lime juice samples. Also, this model’s performance criteria (sensitivity and F-score) were higher than other models for identifying adulterated samples using absorption data. This is the first time that the common adulterations in lime juice were identified by rapid and accessible screening methods using UV/Vis spectroscopy and MLT with high accuracy, precision, and sensitivity. | ||
کلیدواژهها | ||
lime juice؛ UV/Vis spectroscopy؛ SVM؛ MLP؛ k-NN | ||
مراجع | ||
Adeli, H., Khorasani, M. T., & Parvazinia, M. (2019). Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: Fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. International Journal of Biological Macromolecules, 122, 238- 254. AIJN. (2016). Cod of practice for evaluation of fruit and vegetable juices 6.26. reference guideline for lime juice.AliAbadi, M. H. S., KaramiOsboo, R., Kobarfard, F., Jahani, R., Nabi, M., Yazdanpanah, H., . . . Faizi, M. (2022). Detection of lime juice adulteration by simultaneous determination of main organic acids using liquid chromatographytandem mass spectrometry. Journal of Food Composition and Analysis, 105, 104223. Barbosa, R. M., Batista, B. L., Varrique, R. M., Coelho, V. A., Campiglia, A. D., & Barbosa, F. (2014). The use of advanced chemometric techniques and trace element levels for controlling the authenticity of organic coffee. Food Research International, 61, 246-251. doi:https://doi.org/10.1016/j.foodres.2013.07.060 Boateng, E. Y., Otoo, J., & Abaye, D. A. (2020), Basic Tenets of Classification Algorithms K-Nearest-Neighbor, Support Vector Machine, Random Forest and Neural Network: A Review. Journal of Data Analysis and Information Processing, 08(04), 341-357. Bizzani, M., William Menezes Flores, D., Alberto Colnago, L., & David Ferreira, M. (2020). Monitoring of soluble pectin content in orange juice by means of MIR and TD-NMR spectroscopy combined with machine learning. Food Chemistry, 332, 127383. doi:https://doi.org/10.1016/j.foodchem.2020.127383 Boggia, R., Casolino, M. C., Hysenaj, V., Oliveri, P., & Zunin, P. (2013). A screening method based on UV–Visible spectroscopy and multivariate analysis to assess addition of filler juices and water to pomegranate juices. Food Chemistry, 140(4), 735-741. Callao, M. P., & Ruisánchez, I. (2018). An overview of multivariate qualitative methods for food fraud detection. Food Control, 86, 283- 293. Chang, J. D., Zheng, H., Mantri, N., Xu, L., Jiang, Z., Zhang, J., . . . Lu, H. (2016). Chemometrics coupled with ultraviolet spectroscopy: a tool for the analysis of variety, adulteration, quality and ageing of apple juices. International Journal of Food Science & Technology, 51(11), 2474- 2484. Chudzinska, M., & Baralkiewicz, D. (2011). Application of ICP-MS method of determination of 15 elements in honey with chemometric approach for the verification of their authenticity. Food and Chemical Toxicology, 49(11), 2741-2749. doi:https://doi.org/10.1016/j.fct.2011.08.014 Dankowska, A., & Kowalewski, W. (2019). Comparison of different classification methods for analyzing fluorescence spectra to characterize type and freshness of olive oils. European Food Research and Technology, 245(3), 745-752. doi:10.1007/s00217-018-3196-z Dasenaki, M. E., & Thomaidis, N. S. (2019). Quality and authenticity control of fruit juices-A review. Molecules, 24(6), 1014. FAO. (2020). The Citrus Bulletin. Fidelis, M., Santos, J. S., Coelho, A. L. K., Rodionova, O. Y., Pomerantsev, A., & Granato, D. (2017). Authentication of juices from antioxidant and chemical perspectives: A feasibility quality control study using chemometrics. Food Control, 73, 796-805. Gaiad, J. E., Hidalgo, M. J., Villafañe, R. N., Marchevsky, E. J., & Pellerano, R. G. (2016). Tracing the geographical origin of Argentinean lemon juices based on trace element profiles using advanced chemometric techniques. Microchemical Journal, 129, 243-248. doi:https://doi.org/10.1016/j.microc.2016.07.002 González-Molina, E., Domínguez-Perles, R., Moreno, D. A., & GarcíaViguera, C. (2010). Natural bioactive compounds of Citrus limon for food and health. Journal of pharmaceutical and biomedical analysis, 51(2), 327-345. doi:https://doi.org/10.1016/j.jpba.2009.07.027 Guyon, F., Auberger, P., Gaillard, L., Loublanches, C., Viateau, M., Sabathié, N., . . . Médina, B. (2014). 13C/12C isotope ratios of organic acids, glucose and fructose determined by HPLC-co-IRMS for lemon juices authenticity. Food Chemistry, 146, 36-40. Jandrić, Z., & Cannavan, A. (2017). An investigative study on differentiation of citrus fruit/fruit juices by UPLC-QToF MS and chemometrics. Food Control, 72, 173-180. Jiménez-Carvelo, A. M., González-Casado, A., Bagur-González, M. G., & Cuadros-Rodríguez, L. (2019). Alternative data mining/machine learning methods for the analytical evaluation of food quality and authenticity – A review. Food Research International, 122, 25-39. doi:https://doi.org/10.1016/j.foodres.2019.03.063 Jittanit, W., Suriyapornchaikul, N., & Nithisopha, S. (2013). The comparison between the quality of lime juices produced by different preservation techniques. Procedia-Social and Behavioral Sciences, 91, 691-696. L. Kaijanen, M. P., S. Pietarinen, E. Jernström, S. Reinikainen. (2015). Ultraviolet Detection of Monosaccharides: Multiple Wavelength Strategy to Evaluate Results after Capillary Zone Electrophoretic Separation. Int. J. Electrochem. Sci, 10, 2950 - 2961. Lorente, J., Vegara, S., Martí, N., Ibarz, A., Coll, L., Hernández, J., . . . Saura, D. (2014). Chemical guide parameters for Spanish lemon (Citrus limon (L.) Burm.) juices. Food Chemistry, 162, 186-191. Lubinska-Szczygieł, M., Różańska, A., Namieśnik, J., Dymerski, T., Shafreen, R. B., Weisz, M., . . . Gorinstein, S. (2018). Quality of limes juices based on the aroma and antioxidant properties. Food Control, 89, 270-279. Lyu, W., Yuan, B., Liu, S., Simon, J. E., & Wu, Q. (2022). Assessment of lemon juice adulteration by targeted screening using LC-UV-MS and untargeted screening using UHPLC-QTOF/MS with machine learning. Food chemistry, 373, 131424. Maione, C., de Paula, E. S., Gallimberti, M., Batista, B. L., Campiglia, A. D., Jr, F. B., & Barbosa, R. M. (2016). Comparative study of data mining techniques for the authentication of organic grape juice based on ICPMS analysis. Expert Systems with Applications, 49, 60-73. doi:https://doi.org/10.1016/j.eswa.2015.11.024 Natick. (2019). MATLAB. MA, USA: The Mathworks, Inc. Pérez-Caballero, G., Andrade, J., Olmos, P., Molina, Y., Jiménez, I., Durán, J., . . . Miguel-Cruz, F. (2017). Authentication of tequilas using pattern recognition and supervised classification. TrAC Trends in Analytical Chemistry, 94, 117-129. Qiu, S., & Wang, J. (2017). The prediction of food additives in the fruit juice based on electronic nose with chemometrics. Food Chemistry, 230, 208- 214. doi:https://doi.org/10.1016/j.foodchem.2017.03.011 Ríos-Reina, R., Azcarate, S. M., Camiña, J., Callejón, R. M., & Amigo, J. M. (2019). Application of hierarchical classification models and reliability estimation by bootstrapping, for authentication and discrimination of wine vinegars by UV–vis spectroscopy. Chemometrics and Intelligent Laboratory Systems, 191, 42-53. Rivera-Cabrera, F., Ponce-Valadez, M., Sanchez, F., Villegas-Monter, A., & Perez-Flores, L. (2010). Acid limes. A review. Fresh produce, 4(1), 116-122. Ropodi, A., Panagou, E., & Nychas, G.-J. (2016). Data mining derived from food analyses using non-invasive/non-destructive analytical techniques; determination of food authenticity, quality & safety in tandem with computer science disciplines. Trends in Food Science & Technology, 50, 11-25. Saha, D., & Manickavasagan, A. (2021). Machine learning techniques for analysis of hyperspectral images to determine quality of food products: A review. Current Research in Food Science, 4, 28-44. doi:https://doi.org/10.1016/j.crfs.2021.01.002 Sanches, V. L., Cunha, T. A., Viganó, J., de Souza Mesquita, L. M., Faccioli, L. H., Breitkreitz, M. C., & Rostagno, M. A. (2022). Comprehensive analysis of phenolics compounds in citrus fruits peels by UPLC-PDA and UPLC-Q/TOF MS using a fused-core column. Food Chemistry: X, 14, 100262. doi:https://doi.org/10.1016/j.fochx.2022.100262 Shafiee, S., & Minaei, S. (2018). Combined data mining/NIR spectroscopy for purity assessment of lime juice. Infrared Physics & Technology, 91, 193-199. Yu, C., Wang, Y., Cao, H., Zhao, Y., Li, Z., Wang, H., . . . Tang, Q. (2020). Simultaneous Determination of 13 Organic Acids in Liquid Culture Media of Edible Fungi Using High-Performance Liquid Chromatography. BioMed Research International, 2020, 2817979. doi:10.1155/2020/2817979 | ||
آمار تعداد مشاهده مقاله: 157 تعداد دریافت فایل اصل مقاله: 121 |