
تعداد نشریات | 162 |
تعداد شمارهها | 6,692 |
تعداد مقالات | 72,237 |
تعداد مشاهده مقاله | 129,206,774 |
تعداد دریافت فایل اصل مقاله | 102,035,296 |
Comparative Evaluation of Disinfectants’ Efficacy in Reducing Bacterial and Fungal Contamination in Livestock Feed Production | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 19، دوره 19، شماره 2، تیر 2025، صفحه 385-396 اصل مقاله (1.53 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.19.2.1005480 | ||
نویسندگان | ||
Arash Omidi* 1؛ Hassan Mosleh2؛ Maryam Rahimi-Kakolaki2 | ||
1Department of Animal Health Management, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran. | ||
2Department of Food hygiene and Quality Control, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran. | ||
چکیده | ||
Background: Disinfectants in feed factories are crucial in maintaining a clean and hygienic environment, preventing disease spread, controlling cross-contamination, and ensuring product quality, thereby ensuring food safety. Objectives: This study aims to assess the performance of multiple disinfectants in a factory producing livestock, poultry, and aquatic feed, as well as in a laboratory. Methods: Microplate and agar-well diffusion methods were utilized to assess the efficiency of commercial chemical disinfectants (1 and 2) and formalin (37%) on the internal surfaces of the mixer, mill, extruder, dryer, and cooler in the factory and to examine the performance of eight common disinfectants, including disinfectants 1, 2, and 3, sodium hypochlorite (NaClO) (10%), ethanol (70%), methanol (70%), povidone-iodine (10%), and formalin, against Salmonella typhimurium, Escherichia coli, and Fusarium oxysporum. Results: The extruder had the highest level of microbial contamination, while the cooler had the lowest level. Disinfectant 2 and formalin showed the most effective antibacterial and antifungal properties. Disinfectants 2 and 3 showed the highest antibacterial effects in the laboratory, while other disinfectants had the lowest. Disinfectant 2 showed the strongest antifungal effect, followed by formalin, povidone-iodine, and NaClO. Ethanol and methanol showed the least effect. Conclusion: The study emphasizes the importance of selecting effective disinfectants to reduce contamination in animal feed production facilities. Disinfectant 2 (Huwa-San TR-50), with its unique combination of hydrogen peroxide and silver-based ionic chemistry, is a powerful disinfectant solution for various applications. These results can serve as a valuable guide for choosing appropriate disinfectants for similar industries. | ||
کلیدواژهها | ||
E. coli؛ Feed factory؛ Fusarium؛ Commercial disinfectant؛ Salmonella | ||
اصل مقاله | ||
Introduction
As part of the hazard analysis and critical control point (HACCP) program, certain areas in the factory producing animal, poultry, and fish feed were identified, which were as follows: inside the mixer, inside the mill, inside the extruder area, inside the dryer, and the cooler. After physically cleaning the designated areas (10 cm2), disinfectants were applied to the surfaces in quantities consistent with the manufacturer’s recommended concentrations. The treated surfaces were allowed to dry according to the manufacturer’s instructions. Sampling was then conducted using a swab, which were transferred to glass containers with screw lids containing 5.0 mL of normal saline. Subsequently, samples were sent to the laboratory.
Tables 1 and 2 present the disinfectants’ antibacterial, anti-mold, and anti-yeast effects on samples obtained from feed factory surfaces.
Examination of factory sections showed high microbial contamination in the extruder and low contamination in the cooler. Disinfectant 2 and the positive agent (formalin 37%) showed the best antimicrobial effects. Commercial disinfectant 1 had a good effect only in the most contaminated area (extruder).
The laboratory phase
Nalidixic acid had the highest antimicrobial effect, and disinfectants 2 and 3 had good antimicrobial effects against E. coli compared to other substances. In contrast, 70% ethanol, 70% methanol, 10% povidone-iodine, and 10% NaClO had the least antimicrobial effects. Disinfectant 2 had the greatest antifungal effect against F. oxysporum fungus. Formalin (37% formaldehyde), 10% povidone-iodine, 10% NaClO, and disinfectants had good antifungal effects compared to other substances. In contrast, 70% ethanol and 70% methanol had the least antifungal effects.
Disinfectants 2, 3, and nalidixic acid showed the highest inhibitory effects, while 70% ethanol, 70% methanol, 10% povidone-iodine, and 10% NaClO had the least antimicrobial effects against S. typhimurium (Figure 3).
Nalidixic acid had the highest effect, and disinfectants 3 and 2 had good antibacterial effects against E. coli compared to other substances. In contrast, 70% ethanol, 70% methanol, 10% povidone-iodine, and 10% NaClO had the least antibacterial effects (Figures 4A and 4B). Disinfectant 2 had the greatest antifungal effect against the F. oxysporum fungus (Figure 4C). Formalin and disinfectant 3 had good antifungal effects, followed by 10% povidone-iodine and 10% NaClO, while 70% ethanol and 70% methanol had the least antifungal effects.
The lower level of contamination observed in the pellet cooler in this study may be attributed to the implementation of adequate ventilation. Additionally, in the studied factory, the production line involved a dryer in which pellets were dried for 30 minutes at 100 °C before entering the cooler. This process eliminates several microorganisms. The hot pellets, which remain hot when entering the cooler, reduce the microbial load in the cooler area. These results are consistent with Jones’ findings, which indicated that maintaining a temperature of 46 °C at the top of the pellet cooler could effectively reduce Salmonella growth. All three commercial disinfectants, 1, 2, and 3, utilize hydrogen peroxide in their structure. Hydrogen peroxide is a disinfectant with bactericidal and sporicidal properties, is effective against most chlorine-resistant bacteria (Linley et al., 2012), and effectively combats biofilms by producing free radicals that affect the biofilm matrix (Farjami et al., 2022). Unlike peracetic acid and aldehydes, which require disrupting the biofilm matrix before use, hydrogen peroxide can be effective without this process (Wirtanen & Salo, 2003). The superior performance and more effective efficiency of commercial disinfectant 2 compared to commercial disinfectants 1 and 3 can be attributed to colloidal silver in commercial product 2. A complex salt mixture containing ionic silver was formed. This mixture stabilizes hydrogen peroxide and augments its effectiveness (Martin et al., 2015).
Abban, S., Jakobsen, M., & Jespersen, L. (2016). A practical evaluation of detergent and disinfectant solutions on cargo container surfaces for bacteria inactivation efficacy and effect on material corrosion. African Journal of Biotechnology, 12(23). [Link] Abed, A. R., & Hussein, I. M. (2016). In vitro study of antibacterial and antifungal activity of some common antiseptics and disinfectants agents. Kufa Journal For Veterinary Medical Sciences, 7(1B), 148-159. [Link] Asad Salman, R., Khudhur Jameel, S., & Mahdi Shakir, S. (2023). Evaluation of the effects of probiotics and prebiotics on the salmonella typhi infections. Archives of Razi Institute, 78(3), 1115–1130. [PMID] Carrique-Mas, J. J., Bedford, S., & Davies, R. H. (2007). Organic acid and formaldehyde treatment of animal feeds to control Salmonella: efficacy and masking during culture. Journal of Applied Microbiology, 103(1), 88-96. [DOI:10.1111/j.1365-2672.2006.03233.x] [PMID] Chen, N. H., Djoko, K. Y., Veyrier, F. J., & McEwan, A. G. (2016). Formaldehyde stress responses in bacterial pathogens. Frontiers in Microbiology, 7, [DOI:10.3389/fmicb.2016.00257] [PMID] Cloete, T. E. (2003). Resistance mechanisms of bacteria to antimicrobial compounds. International Biodeterioration & Biodegradation, 51(4), 277-282. [DOI:10.1016/S0964-8305(03)00042-8] Davies, R. H., & Wales, A. D. (2010). Investigations into Salmonella contamination in poultry feedmills in the United Kingdom. Journal of Applied Microbiology, 109(4), 1430-1440. [DOI:10.1111/j.1365-2672.2010.04767.x] [PMID] Davies, R., & Wales, A. (2019). Antimicrobial resistance on farms: A review including biosecurity and the potential role of disinfectants in resistance selection. Comprehensive Reviews in Food Science and Food Safety, 18(3), 753-774. [DOI:10.1111/1541-4337.12438] [PMID] Davies, R. H., & Wray, C. (1997). Distribution of Salmonella contamination in ten animal feedmills. Veterinary Microbiology, 57(2-3), 159-169. [DOI:11016/s0378-1135(97)00114-4] [PMID] Dvorak, G. (2008). Disinfection 101. Iowa: Center for Food Security and Public Health. [Link] Farjami, A., Jalilzadeh, S., Siahi-Shadbad, M., & Lotfipour, F. (2022). The anti-biofilm activity of hydrogen peroxide against Escherichia coli strain FL-Tbz isolated from a pharmaceutical water system. Journal of Water and Health, 20(10), 1497-1505. [DOI:10.2166/wh.2022.061] [PMID] Farouk, M. M., El-Molla, A., Salib, F. A., Soliman, Y. A., & Shaalan, M. (2020). The role of silver nanoparticles in a treatment approach for multidrug-resistant Salmonella species isolates. International Journal of Nanomedicine, 15, 6993–7011.[DOI:10.2147/IJN.S270204][PMID] EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). (2014). Scientific Opinion on the safety and efficacy of formaldehyde for all animal species based on a dossier submitted by Regal BV. EFSA Journal, 12(2), 3561. [DOI:10.2903/j.efsa.2014.3561] Gomaa, A., Verghese, M., & Herring, J. (2020). Modulation of anti-microbial resistant salmonella Heidelberg using Synbiotics (Probiotics and Prebiotics) in two in-vitro assays (Cross-Streaking and Agar Wells Diffusion). Open Journal of Applied Sciences, 10(09), 561-575. [DOI:10.4236/ojapps.2020.109040] Hassanzadeh, P., Nouri Gharajalar, S., & Mohammadzadeh, S. (2022). Antimicrobial effects of different synbiotic compounds against pathogenic bacteria isolated from beef, mutton, and chicken. Archives of Razi Institute, 77(6), 2105–2113. [DOI:10.22092/ARI.2022.35782107] [PMID] Huss, A. R., Cochrane, R. A., Deliephan, A., Stark, C. R., & Jones, C. K. (2015). Evaluation of a biological pathogen decontamination protocol for animal feed mills. Journal of Food Protection, 78(9), 1682–1688. [DOI:10.4315/0362-028X.JFP-15-052] [PMID] Jones, F. T. (2008). Control of toxic substances. Feedstuffs, 80(38), 77-81. [Link] Jones, F. T. (2011). A review of practical Salmonella control measures in animal feed. Journal of Applied Poultry Research, 20(1), 102-113. [DOI:10.3382/japr.2010-00281] Kavitha, K. S., & Satish, S. (2016). Bioprospecting of some medicinal plants explored for antifungal activity. Pharmacognosy Journal, 8(1), 59-65. [DOI:10.5530/pj.2016.1.13] Linley, E., Denyer, S. P., McDonnell, G., Simons, C., & Maillard, J. (2012). Use of hydrogen peroxide as a biocide: New consideration of its mechanisms of biocidal action. The Journal of Antimicrobial Chemotherapy, 67(7), 1589–1596. [DOI:10.1093/jac/dks129] [PMID] Martin, N. L., Bass, , & Liss, S. N. (2015). Antibacterial properties and mechanism of activity of a novel silver-stabilized hydrogen peroxide. Plos One, 10(7), e0131345. [DOI:10.1371/journal.pone.0131345][PMID] Møretrø, T., Vestby, L. K., Nesse, L. L., Storheim, S. E., Kotlarz, K., & Langsrud, S. (2009). Evaluation of efficacy of disinfectants against Salmonella from the feed industry. Journal of Applied Microbiology, 106(3), 1005–1012. [DOI:10.1111/j.1365-2672.2008.04067.x] [PMID] Muckey, M. B. (2016). Evaluation of surface sanitation to prevent biological hazards in animal food manufacturing [MA thesis]. Manhattan: Kansas State University. [Link] Muckey, M. B., Jones, C. K., Woodworth, J. C., Paulk, C. B., Dritz, S. S., & Gebhardt, T. (2021). Using environmental sampling to evaluate the effectiveness of decontamination methods to reduce detection of porcine epidemic diarrhea virus RNA on feed manufacturing surfaces. Translational Animal Science, 5(3), txab121. [DOI:10.1093/tas/txab121][PMID] Nikolic, P., Mudgil, P., & Whitehall, J. (2019). Formaldehyde as an alternative to antibiotics for treatment of refractory impetigo and other infectious skin diseases. Expert Review of Anti-Infective Therapy, 17(9), 681–687. [DOI:10.1080/1472019.1654376] [PMID] Negash, D. (2020). Animal feed safety: Cases and approaches to identify the contaminants and toxins. Advances in Nutrition and Food Science, 2020(3), 1-8. [Link] Parker, E. M., Edwards, L. J., Mollenkopf, D. F., Ballash, G. A., Wittum, T. E., & Parker, A. J. (2019). Salmonella monitoring programs in Australian feed mills: A retrospective analysis. Australian Veterinary Journal, 97(9), 336-342. [DOI:10.1111/avj.12851] [PMID] Peidaei, F., Ahari, H., Anvar, S. A. A. and Ataee, M. (2021). Nanotechnology in food packaging and storage: A review. Iranian Journal of Veterinary Medicine, 15(2), 122-153. [DOI:10.22059/ijvm.2021.310466.1005130] Rahimi-Kakolaki, M., & Omidi, A. (2020). [Effect of cell-free supernatant of Lactobacillus reuteri on the growth rate of toxigenic Fusarium oxysporum in vitro (Persian)]. New Findings in Veterinary Microbiology, 3(1), 11-20. [DOI: 10.22034/nfvm.2020.114951] Rahimi Kakolaki, M., Omidi, A., Rasooli, A., & Shekarforoush, S. S. (2024). In vitro antifungal activity of barberry fruit extract (Berberis spp.) against Fusarium spp. Journal of Horticulture and Postharvest Research, 7(24), 47-60. [DOI:10.22077/jhpr.2023.6783.1333] Resae, A., Yousefi, M., Naeimi, S., & Mahdavi, A. (2022). Effects of occupational formaldehyde exposure on passive avoidance conditioning and anxiety levels in Wistar rats. Iranian Journal of Veterinary Medicine, 17(1), 65-74. [DOI:10.22059/ijvm.17.1.1005241] Ricke, S. C., Richardson, K., & Dittoe, D. K. (2019). Formaldehydes in feed and their potential interaction with the poultry gastrointestinal tract microbial community-A review. Frontiers in Veterinary Science, 6, [DOI:10.3389/fvets.2019.00188][PMID] Soltani, M., Shafiei, S., Mirzargar, S. S., & Asadi, S. (2023). Probiotic, paraprobiotic, and postbiotic as an alternative to antibiotic therapy for lactococcosis in aquaculture. Iranian Journal of Veterinary Medicine, 17(4), 287-300. [DOI:10.32598/ijvm.17.4.1005342] Stringfellow, K., Anderson, P., Caldwell, D., Lee, J., Byrd, J., & McReynolds, J., et al. (2009). Evaluation of disinfectants commonly used by the commercial poultry industry under simulated field conditions. Poultry Science, 88(6), 1151–1155.[DOI:10.3382/ps.2008-00455] [PMID] Tong, C., Hu, H., Chen, G., Li, Z., Li, A., & Zhang, J. (2021).Disinfectant resistance in bacteria: Mechanisms, spread, and resolution strategies. Environmental Research, 195, [DOI:10.1016/j.envres.2021.110897] [PMID] Vidács, A., Kerekes, E., Rajkó, R., Petkovits, T., Alharbi, N. S., & Khaled, J. M., et al. (2018). Optimization of essential oil-based natural disinfectants against Listeria monocytogenes and Escherichia coli biofilms formed on polypropylene surfaces. Journal of Molecular Liquids, 255, 257-262. [DOI:10.1016/j.molliq.2018.01.179] Wales, A. D., Gosling, R. J., Bare, H. L., & Davies, R. H. (2021). Disinfectant testing for veterinary and agricultural applications: A review. Zoonoses and Public Health, 68(5), 361–375.[DOI:10.1111/zph.12830] [PMID] Wirtanen, G., & Salo, S. (2003). Disinfection in food processing-efficacy testing of disinfectants. Reviews in Environmental Science and Biotechnology, 2, 293-306. [DOI:10.1023/B:RESB.0000040471.15700.03] Zhang, D., Li, R., & Li, J. (2012). Lactobacillus reuteri ATCC 55730 and L22 display probiotic potential in vitro and protect against Salmonella-induced pullorum disease in a chick model of infection. Research in Veterinary Science, 93(1), 366-373. [DOI:10.1016/j.rvsc.2011.06.020] [PMID] Zhao, H., Vegi, A., & Wolf-Hall, C. (2017). Screening of lactic acid bacteria for anti-Fusarium activity and optimization of incubation conditions. Journal of Food Protection, 80(10), 1648-1656. [DOI:10.4315/0362-028X.JFP-17-100] [PMID] Zhu, Z., Shan, L., Zhang, X., Hu, F., Zhong, D., & Yuan, Y., et al. (2021). Effects of bacterial community composition and structure in drinking water distribution systems on biofilm formation and chlorine resistance. Chemosphere, 264(Pt 1), 128410.[DOI:10.1016/j.chemosphere.2020.128410] [PMID | ||
مراجع | ||
Abban, S., Jakobsen, M., & Jespersen, L. (2016). A practical evaluation of detergent and disinfectant solutions on cargo container surfaces for bacteria inactivation efficacy and effect on material corrosion. African Journal of Biotechnology, 12(23). [Link]
Abed, A. R., & Hussein, I. M. (2016). In vitro study of antibacterial and antifungal activity of some common antiseptics and disinfectants agents. Kufa Journal For Veterinary Medical Sciences, 7(1B), 148-159. [Link]
Asad Salman, R., Khudhur Jameel, S., & Mahdi Shakir, S. (2023). Evaluation of the effects of probiotics and prebiotics on the salmonella typhi infections. Archives of Razi Institute, 78(3), 1115–1130. [PMID]
Carrique-Mas, J. J., Bedford, S., & Davies, R. H. (2007). Organic acid and formaldehyde treatment of animal feeds to control Salmonella: efficacy and masking during culture. Journal of Applied Microbiology, 103(1), 88-96. [DOI:10.1111/j.1365-2672.2006.03233.x] [PMID]
Chen, N. H., Djoko, K. Y., Veyrier, F. J., & McEwan, A. G. (2016). Formaldehyde stress responses in bacterial pathogens. Frontiers in Microbiology, 7, [DOI:10.3389/fmicb.2016.00257] [PMID]
Cloete, T. E. (2003). Resistance mechanisms of bacteria to antimicrobial compounds. International Biodeterioration & Biodegradation, 51(4), 277-282. [DOI:10.1016/S0964-8305(03)00042-8]
Davies, R. H., & Wales, A. D. (2010). Investigations into Salmonella contamination in poultry feedmills in the United Kingdom. Journal of Applied Microbiology, 109(4), 1430-1440. [DOI:10.1111/j.1365-2672.2010.04767.x] [PMID]
Davies, R., & Wales, A. (2019). Antimicrobial resistance on farms: A review including biosecurity and the potential role of disinfectants in resistance selection. Comprehensive Reviews in Food Science and Food Safety, 18(3), 753-774. [DOI:10.1111/1541-4337.12438] [PMID]
Davies, R. H., & Wray, C. (1997). Distribution of Salmonella contamination in ten animal feedmills. Veterinary Microbiology, 57(2-3), 159-169. [DOI:11016/s0378-1135(97)00114-4] [PMID]
Dvorak, G. (2008). Disinfection 101. Iowa: Center for Food Security and Public Health. [Link]
Farjami, A., Jalilzadeh, S., Siahi-Shadbad, M., & Lotfipour, F. (2022). The anti-biofilm activity of hydrogen peroxide against Escherichia coli strain FL-Tbz isolated from a pharmaceutical water system. Journal of Water and Health, 20(10), 1497-1505. [DOI:10.2166/wh.2022.061] [PMID]
Farouk, M. M., El-Molla, A., Salib, F. A., Soliman, Y. A., & Shaalan, M. (2020). The role of silver nanoparticles in a treatment approach for multidrug-resistant Salmonella species isolates. International Journal of Nanomedicine, 15, 6993–7011.[DOI:10.2147/IJN.S270204][PMID]
EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP). (2014). Scientific Opinion on the safety and efficacy of formaldehyde for all animal species based on a dossier submitted by Regal BV. EFSA Journal, 12(2), 3561. [DOI:10.2903/j.efsa.2014.3561]
Gomaa, A., Verghese, M., & Herring, J. (2020). Modulation of anti-microbial resistant salmonella Heidelberg using Synbiotics (Probiotics and Prebiotics) in two in-vitro assays (Cross-Streaking and Agar Wells Diffusion). Open Journal of Applied Sciences, 10(09), 561-575. [DOI:10.4236/ojapps.2020.109040]
HHassanzadeh, P., Nouri Gharajalar, S., & Mohammadzadeh, S. (2022). Antimicrobial effects of different synbiotic compounds against pathogenic bacteria isolated from beef, mutton, and chicken. Archives of Razi Institute, 77(6), 2105–2113. [DOI:10.22092/ARI.2022.35782107] [PMID]
Huss, A. R., Cochrane, R. A., Deliephan, A., Stark, C. R., & Jones, C. K. (2015). Evaluation of a biological pathogen decontamination protocol for animal feed mills. Journal of Food Protection, 78(9), 1682–1688. [DOI:10.4315/0362-028X.JFP-15-052] [PMID]
Jones, F. T. (2008). Control of toxic substances. Feedstuffs, 80(38), 77-81. [Link]
Jones, F. T. (2011). A review of practical Salmonella control measures in animal feed. Journal of Applied Poultry Research, 20(1), 102-113. [DOI:10.3382/japr.2010-00281]
Kavitha, K. S., & Satish, S. (2016). Bioprospecting of some medicinal plants explored for antifungal activity. Pharmacognosy Journal, 8(1), 59-65. [DOI:10.5530/pj.2016.1.13]
Linley, E., Denyer, S. P., McDonnell, G., Simons, C., & Maillard, J. (2012). Use of hydrogen peroxide as a biocide: New consideration of its mechanisms of biocidal action. The Journal of Antimicrobial Chemotherapy, 67(7), 1589–1596. [DOI:10.1093/jac/dks129] [PMID]
Martin, N. L., Bass, , & Liss, S. N. (2015). Antibacterial properties and mechanism of activity of a novel silver-stabilized hydrogen peroxide. Plos One, 10(7), e0131345. [DOI:10.1371/journal.pone.0131345][PMID]
Møretrø, T., Vestby, L. K., Nesse, L. L., Storheim, S. E., Kotlarz, K., & Langsrud, S. (2009). Evaluation of efficacy of disinfectants against Salmonella from the feed industry. Journal of Applied Microbiology, 106(3), 1005–1012. [DOI:10.1111/j.1365-2672.2008.04067.x] [PMID]
Muckey, M. B. (2016). Evaluation of surface sanitation to prevent biological hazards in animal food manufacturing [MA thesis]. Manhattan: Kansas State University. [Link]
Muckey, M. B., Jones, C. K., Woodworth, J. C., Paulk, C. B., Dritz, S. S., & Gebhardt, T. (2021). Using environmental sampling to evaluate the effectiveness of decontamination methods to reduce detection of porcine epidemic diarrhea virus RNA on feed manufacturing surfaces. Translational Animal Science, 5(3), txab121. [DOI:10.1093/tas/txab121][PMID]
Nikolic, P., Mudgil, P., & Whitehall, J. (2019). Formaldehyde as an alternative to antibiotics for treatment of refractory impetigo and other infectious skin diseases. Expert Review of Anti-Infective Therapy, 17(9), 681–687. [DOI:10.1080/1472019.1654376] [PMID]
Negash, D. (2020). Animal feed safety: Cases and approaches to identify the contaminants and toxins. Advances in Nutrition and Food Science, 2020(3), 1-8. [Link]
Parker, E. M., Edwards, L. J., Mollenkopf, D. F., Ballash, G. A., Wittum, T. E., & Parker, A. J. (2019). Salmonella monitoring programs in Australian feed mills: A retrospective analysis. Australian Veterinary Journal, 97(9), 336-342. [DOI:10.1111/avj.12851] [PMID]
Peidaei, F., Ahari, H., Anvar, S. A. A. and Ataee, M. (2021). Nanotechnology in food packaging and storage: A review. Iranian Journal of Veterinary Medicine, 15(2), 122-153. [DOI:10.22059/ijvm.2021.310466.1005130]
Rahimi-Kakolaki, M., & Omidi, A. (2020). [Effect of cell-free supernatant of Lactobacillus reuteri on the growth rate of toxigenic Fusarium oxysporum in vitro (Persian)]. New Findings in Veterinary Microbiology, 3(1), 11-20. [DOI: 10.22034/nfvm.2020.114951]
Rahimi Kakolaki, M., Omidi, A., Rasooli, A., & Shekarforoush, S. S. (2024). In vitro antifungal activity of barberry fruit extract (Berberis spp.) against Fusarium spp. Journal of Horticulture and Postharvest Research, 7(24), 47-60. [DOI:10.22077/jhpr.2023.6783.1333]
Resae, A., Yousefi, M., Naeimi, S., & Mahdavi, A. (2022). Effects of occupational formaldehyde exposure on passive avoidance conditioning and anxiety levels in Wistar rats. Iranian Journal of Veterinary Medicine, 17(1), 65-74. [DOI:10.22059/ijvm.17.1.1005241]
Ricke, S. C., Richardson, K., & Dittoe, D. K. (2019). Formaldehydes in feed and their potential interaction with the poultry gastrointestinal tract microbial community-A review. Frontiers in Veterinary Science, 6, [DOI:10.3389/fvets.2019.00188][PMID]
Soltani, M., Shafiei, S., Mirzargar, S. S., & Asadi, S. (2023). Probiotic, paraprobiotic, and postbiotic as an alternative to antibiotic therapy for lactococcosis in aquaculture. Iranian Journal of Veterinary Medicine, 17(4), 287-300. [DOI:10.32598/ijvm.17.4.1005342]
Stringfellow, K., Anderson, P., Caldwell, D., Lee, J., Byrd, J., & McReynolds, J., et al. (2009). Evaluation of disinfectants commonly used by the commercial poultry industry under simulated field conditions. Poultry Science, 88(6), 1151–1155.[DOI:10.3382/ps.2008-00455] [PMID]
Tong, C., Hu, H., Chen, G., Li, Z., Li, A., & Zhang, J. (2021).Disinfectant resistance in bacteria: Mechanisms, spread, and resolution strategies. Environmental Research, 195, [DOI:10.1016/j.envres.2021.110897] [PMID]
Vidács, A., Kerekes, E., Rajkó, R., Petkovits, T., Alharbi, N. S., & Khaled, J. M., et al. (2018). Optimization of essential oil-based natural disinfectants against Listeria monocytogenes and Escherichia coli biofilms formed on polypropylene surfaces. Journal of Molecular Liquids, 255, 257-262. [DOI:10.1016/j.molliq.2018.01.179]
Wales, A. D., Gosling, R. J., Bare, H. L., & Davies, R. H. (2021). Disinfectant testing for veterinary and agricultural applications: A review. Zoonoses and Public Health, 68(5), 361–375.[DOI:10.1111/zph.12830] [PMID]
Wirtanen, G., & Salo, S. (2003). Disinfection in food processing-efficacy testing of disinfectants. Reviews in Environmental Science and Biotechnology, 2, 293-306. [DOI:10.1023/B:RESB.0000040471.15700.03]
Zhang, D., Li, R., & Li, J. (2012). Lactobacillus reuteri ATCC 55730 and L22 display probiotic potential in vitro and protect against Salmonella-induced pullorum disease in a chick model of infection. Research in Veterinary Science, 93(1), 366-373. [DOI:10.1016/j.rvsc.2011.06.020] [PMID]
Zhao, H., Vegi, A., & Wolf-Hall, C. (2017). Screening of lactic acid bacteria for anti-Fusarium activity and optimization of incubation conditions. Journal of Food Protection, 80(10), 1648-1656. [DOI:10.4315/0362-028X.JFP-17-100] [PMID]
Zhu, Z., Shan, L., Zhang, X., Hu, F., Zhong, D., & Yuan, Y., et al. (2021). Effects of bacterial community composition and structure in drinking water distribution systems on biofilm formation and chlorine resistance. Chemosphere, 264(Pt 1), 128410.[DOI:10.1016/j.chemosphere.2020.128410] [PMID | ||
آمار تعداد مشاهده مقاله: 248 تعداد دریافت فایل اصل مقاله: 402 |