- امیری، مهدیس؛ پورقاسمی، حمیدرضا؛ قنبریان، غلامعباس و افضلی، سید فخرالدین. (1398). مدلسازی مکانی فرسایش خندقی با استفاده از سناریوهای مختلف و الگوریتم وزن واقعه. مهندسی و مدیریت آبخیز، 11(4)، 1032-1016. Doi:10.22092/IJWMSE.2018.120399.1435
- داودی راد، علی اکبر و محمدی، مجید. (1401). بررسی دقت نقشه حساسیت پذیری فرسایش آبکندی با استفاده از روشهای SVM و MARS در حوزه آبخیز شازند. علوم و مهندسی آبخیزداری ایران، 16(59)، 22-12. DOR:20.1001.1.20089554.1401.16.59.1.4
- شهبازی, علی؛ وکیلی تجره، فرزانه؛ الوندی، احسان؛ بیات، ا. و اسدی نلیوان، امید. (1400). ارزیابی مدلهای شبکه عصبی مصنوعی و حداکثر آنتروپی در پهنهبندی حساسیت فرسایش آبکندی حوزه آبخیز سد گلستان. مجله علوم و مهندسی آبخیزداری ایران، 15، 23-12. DOR:20.1001.1.20089554.1400.15.52.4.6
- صفاری، امیر؛ کرم، امیر؛ شادفر، صمد و احمدی، مهدی. (1398). تأثیر ویژگیهای خاک بر مورفولوژی و گسترش فرسایش خندقی (مطالعه موردی: حوضه رودخانه مهران لامرد، فارس). پژوهشهای ژئومورفولوژی کمی، (1)، 146-130.
- Amiri, M., Pourqasmi, H., Ghanbarian, Gh-A., & Afzali, S. F. (2019). Spatial modeling of gully erosion using different scenarios and event weighting algorithm. Watershed Engineering and Management, 11(4), 1016-1032. [In Persian]
- Angileri, S.E., Conoscenti, Ch., Hochschild, V., Märker, M., Rotigliano, E., & Agnesi, V. (2016). Water erosion susceptibility mapping by applying stochastic gradient treeboost to the Imera Meridionale river basin (Sicily,Italy), Geomorphology, 262, 61-76. https://doi.org/10.1016/j.geo morph.2016.03.018
- Arabameri, A., Pradhan, B., Rezaei, K., & Conoscenti, C. (2019). Gully erosion susceptibility mapping using GIS-based multi-criteria decision analysis techniques. Catena, 180, 282-297. https://doi.org/10.1016/j.catena.2019.04.032
- Avand, M., S. Janizadeh, S.A. Naghibi, H.R. Pourghasemi, S. Khosrobeigi Bozchaloei, and Th Blaschke, (2019). A comparative assessment of random forest and k-nearest neighbor classifiers for gully erosion susceptibility mapping. Water, 11, 2076. https://doi.org/10.3390/w11102076
- Azedou, A., Lahssini, S., Khattabi, A., Meliho, M., & Rifai, N. (2021). A methodologicalcomparison of three models for gully erosion susceptibility mapping in the rural municipality of El Faid (Morocco). Sustainability, 13, 682. https://doi.org/10.3390/su13020682
- Bui, D. T., Pradhan, B., Lofman, O., Revhaug, I., & Dick, O. B. (2012). Landslide susceptibility assessment in the Hoa Binh province of Vietnam: a comparison of the Levenberg–Marquardt and Bayesian regularized neural networks. Geomorphology, 171, 12-29. https ://doi.org/10.1016/j.geomorph.2012.04.023
- Davoudi Rad, A. A., & Mohammadi, M. (2022). Checking the accuracy of watershed erosion sensitivity map using SVM and MARS methods in Shazand watershed. Iran Watershed Science and Engineering, 16(59), 12-22. [In Persian].
- Grohmann, C. H., & Riccomini, C. (2009). Comparison of roving-window and search-window techniques for characterising landscape morphometry. Computers & Geosciences, 35(10), 2164-2169. https://doi.org/10.1016/j.cageo.2008.12.014
- Hosseinalizadeh, M., Kariminejad, N., Rahmati, O., Keesstra, S., Alinejad, M., & Behbahani, A. M. (2019). How can statistical and artificial intelligence approaches predict piping erosion susceptibility?. Science of the Total Environment, 646, 1554-1566. https://doi. org/10.1016/j.scitotenv.2018.07.396
- Kirkby, M., & Bracken, L. (2009). Gully processes and gully dynamics. Earth Surface Processes and Landforms: The Journal of the British Geomorphological Research Group, 34(14), 1841-1851. https://doi.org/10.1002/esp.1866
- Kutner, M. H., Nachtsheim, C. J., Neter, J., & Li, W. (2004). Applied linear statistical models. McGraw-hill.
- LeRoux, J.J., & Sumner, P.D. (2012). Factors controlling gully development: comparing continuous and discontinuous gullies. Land Degradation & Development, 23, 440-49. https doi.org/10.1002/ldr.1083
- Lucà, F., Conforti, M., & Robustelli, G. (2011). Comparison of GIS-based gullying susceptibility mapping using bivariate and multivariate statistics: Northern Calabria, South Italy. Geomorphology, 134(3-4), 297-308. https://doi.org/10.1016/j.geomorph.2011.07.006
- Mohammady, M., & Davudirad, A. (2023). Gully Erosion Susceptibility Assessment Using Different Machine Learning Algorithms: A Case Study of Shazand Watershed in Iran. Environmental Modeling & Assessment, 1-13. https://doi.org/10.1007/s10666-023-09910-4
- Morgan, R. P. C. (2009). Soil erosion and conservation: John Wiley & Sons.
- Naghibi, S. A., Pourghasemi, H. R., & Dixon, B. (2016). GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environmental monitoring and assessment, 188, 1-27. https://doi.org/10.1007/s10661-015-5049-6
- Pourghasemi, H. R., Gayen, A., Haque, S. M., & Bai, S. (2020). Gully erosion susceptibility assessment through the SVM machine learning algorithm (SVM-MLA). Gully Erosion Studies from India and Surrounding Regions, 415-425. https://doi.org/10.1007/978-3-030-23243-6_28
- Pradhan, B. (2013). A comparative study on the predictive ability of the decision tree, support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350-365. https://doi.org/10.1016/j.cageo.2012.08.023
- Rahmati, O., Tahmasebipour, N., Haghizadeh, A., Pourghasemi, H. R., & Feizizadeh, B. (2017). Evaluation of different machine learning models for predicting and mapping the susceptibility of gully erosion. Geomorphology, 298, 118-137. https://doi.org/10.1016/j.geomorph.2017.09.006
- Safari, A. Karam, A., Shadfar, S., & Ahmadi, M. (2019). The influence of soil characteristics on the morphology and spread of gully erosion (case study: Mehran Lamard River Basin, Fars). Quantitative Geomorphology Research, 8 (1), 130-146. [In Persian].
- Saha, A., S.Ch. Pal, A. Arabameri, I. Chowdhuri, F. Rezaie, R. Chakrabortty, P. Roy, & M. Shit, (2021). Optimization modelling to establish false measures implemented with ex-situ plant species to control gully erosion in a monsoon-dominated region with novel in-situ measurements, Journal of Environmental Management, 287, 112284. https://doi.org/10.1016/j.jenvman.2021.112284
- Saha, S., Roy, J., Arabameri, A., Blaschke, T., & Tien Bui, D. (2020). Machine learning-based gully erosion susceptibility mapping: A case study of Eastern India. Sensors, 20(5), 1313. https://doi.org/10.3390/s20051313
- Shahbazi, A., Vakili Tejareh, F., Alwandi, E., Bayat, A., & Asadi Nelivan, O. (2021). Evaluation of artificial neural network models and maximum entropy in the zoning of hydrological erosion sensitivity of Golestan dam watershed. Iranian Watershed Science and Engineering Journal, 12-23, 15. [In Persian].
- Wang, F., Sahana, M., Pahlevanzadeh, B., Pal, S. C., Shit, P. K., Piran, M. J., . . . Mosavi, A. (2021). Applying different resampling strategies in machine learning models to predict head-cut gully erosion susceptibility. Alexandria Engineering Journal, 60(6), 5813-5829. https://doi.org/10.1016/j.aej.2021.04.026
- Wang, G., Chen, X., & Chen, W. (2020). Spatial prediction of landslide susceptibility based on GIS and discriminant functions. ISPRS International Journal of Geo-Information, 9(3), 144. https://doi.org/10.3390/ijgi9030144
- Zucca, C., A. Canu, and R. D. Peruta, (2006). Effects of land use and landscape on spatial distribution and morphological features of gullies in an agropastoral area in Sardinia (Italy), Catena, 68, 87-95. https://doi.org/10.1016/j.catena.2006.03.01
|