تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,118,211 |
تعداد دریافت فایل اصل مقاله | 97,224,081 |
تعیین حساسیت به فلزات سنگین در باکتریهای مولد سورفکتانت و کارایی آنها در حذف هیدروکربنهای نفتی کل | ||
تحقیقات آب و خاک ایران | ||
دوره 54، شماره 10، دی 1402، صفحه 1565-1579 اصل مقاله (1.43 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.361018.669528 | ||
نویسندگان | ||
سحر کریمی1؛ شایان شریعتی2؛ احمدعلی پوربابائی* 1؛ حسینعلی علیخانی3؛ ریحانه کلامی1 | ||
1گروه علوم و مهندسی خاک، دانشگاه تهران، کرج، ایران. | ||
2گروه مهندسی محیط زیست، دانشکده محیط زیست، دانشگاه تهران،تهران، ایران. | ||
3گروه علوم و مهندسی خاک، دانشکدگان کشاورزی و منابع طبیعی دانشگاه تهران، کرج، ایران | ||
چکیده | ||
به دلیل همراه بودن برخی از فلزات سنگین با هیدروکربنهای نفتی، بکارگیری باکتریهای بومی تجزیهکننده نفت مولد سورفکتانت که مقاوم به فلزات سنگین باشند از اولویتهای فناوری زیست پالائی محسوب میشود. به همین منظور، در این مطالعه از 39 سویه تجزیه کننده آلکانها و تولید کننده سورفکتانت زیستی (جداسازی شده از خاکهای شور آلوده به نفت در مناطق نفت خیز جنوب استان خوزستان) متعلق به بانک ژن آزمایشگاه میکروبیولوژی خاک دانشگاه تهران استفاده شد. سپس حساسیت جدایهها در برابر غلظتهای مختلف (40 تا 80 ppm) فلزات سنگین (کروم، سرب، مس، نیکل، کادمیوم) مورد آزمون قرار گرفت. نتایج نشان داد فقط سه سویه Ochrobactrum lupini strain SH23، Ochrobactrum lupine strain SH24 و SH34 Bacillus subtilis subsp. Inaquosorum توانایی رشد در حضور همه فلزات سنگین را داشتند. نتایج حاصل تاثیر غلظتهای مختلف فلزات سنگین بر MBC و MIC باکتریهای منتخب نشان داد باکتری Ochrobactrum lupini strain SH23 بیشترین میزان تحمل به فلزات سنگین را داشت. ارزیابی توانایی تجزیه کنندگی هیدروکربنهای نفتی در حضور فلزات سنگین توسط باکتریهای منتخب، نشان داد کنسرسیوم میکروبی (SH23، SH24 و SH34) و باکتری Ochrobactrum lupini strain SH23 به ترتیب توانستند 71 و 64 درصد نفت خام با غلظت 5/0 درصد (حجمی/حجمی) را بعد از 10 روز هوادهی و در دمای 30 درجه سلسیوس تجزیه کنند. یافتههای این پژوهش ثابت کرد با انجام مطالعات زیستمحیطی تکمیلی میتوان از باکتری Ochrobactrum lupini strain SH23 در تصفیه آب و پساب آلوده به هیدروکربنهای نفتی و فلزات سنگین استفاده کرد. | ||
کلیدواژهها | ||
باکتریهای مقاوم به فلزات سنگین؛ سورفاکتانت زیستی؛ گازوئیل؛ هیدروکربنهای نفتی کل | ||
مراجع | ||
Abolahrar, S., Kafilzadeh, F., & Kargar, M. (2014). Identifying cadmium resistant bacteria and evaluating their resistance spectrum during quarterly monitoring on the Kor River. Journal of Environmental Science and Technology, 16 (3), 165-179. Abou-Shanab, R. A., Eraky, M., Haddad, A. M., Abdel-Gaffar, A. R. B., & Salem, A. M. (2016). Characterization of crude oil degrading bacteria isolated from contaminated soils surrounding gas stations. Bulletin of environmental contamination and toxicology, 97, 684-688. Al-Mur, B. A., Pugazhendi, A., & Jamal, M. T. (2021). Application of integrated extremophilic (halo-alkalo-thermophilic) bacterial consortium in the degradation of petroleum hydrocarbons and treatment of petroleum refinery wastewater under extreme condition. Journal of Hazardous Materials, 413, 125351. Aljerf, L., & Choukaife, A. E. (2018). Review: assessment of the doable utilisation of dendrochronology as an element tracer technology in soils artificially contaminated with heavy metals. Biodiversity Int J, 2 (1), 00037. Angle, J. S., & Chaney, R. L. (1989). Cadmium resistance screening in nitrilotriacetate-buffered minimal media. Applied and environmental microbiology, 55 (8), 2101-2104. Arulazhagan, P., & Vasudevan, N. (2011). Biodegradation of polycyclic aromatic hydrocarbons by a halotolerant bacterial strain Ochrobactrum sp. VA1. Marine pollution bulletin, 62 (2), 388-394. Behdarvandan, P., Jalilzadeh Yengejeh, R., Sabzalipour, S., Roomiani, L., & Payandeh, K. (2020). Bioremediation of crude oil by indigenous species isolated from oil sludge contaminated soil. A case study: Karun Gas Oil Production Company,(IRAN). Journal of Advances in Environmental Health Research, 8 (4), 234-241. Bezza, F. A., Beukes, M., & Chirwa, E. M. N. (2015). Application of biosurfactant produced by Ochrobactrum intermedium CN3 for enhancing petroleum sludge bioremediation. Process biochemistry, 50 (11), 1911-1922. Bhattacharya, M., Biswas, D., Sana, S., & Datta, S. (2015). Biodegradation of waste lubricants by a newly isolated Ochrobactrum sp. C1. 3 Biotech, 5, 807-817. Bhattacharya, M., Biswas, D., Sana, S., & Datta, S. (2014). Utilization of waste engine oil by Ochrobactrum pseudintermedium strain C1 that secretes an exopolysaccharide as a bioemulsifier. Biocatalysis and Agricultural Biotechnology, 3 (4), 167-176. Bruins, M. R., Kapil, S., & Oehme, F. W. (2000). Microbial resistance to metals in the environment. Ecotoxicology and environmental safety, 45 (3), 198-207. Cerqueda-García, D., García-Maldonado, J. Q., Aguirre-Macedo, L., & García-Cruz, U. (2020). A succession of marine bacterial communities in batch reactor experiments during the degradation of five different petroleum types. Marine Pollution Bulletin, 150, 110775. Chen, C., Lei, W., Lu, M., Zhang, J., Zhang, Z., Luo, C., ... & Shen, Z. (2016). Characterization of Cu (II) and Cd (II) resistance mechanisms in Sphingobium sp. PHE-SPH and Ochrobactrum sp. PHE-OCH and their potential application in the bioremediation of heavy metal-phenanthrene co-contaminated sites. Environmental Science and Pollution Research, 23, 6861-6872. Chen, W., Kong, Y., Li, J., Sun, Y., Min, J., & Hu, X. (2020). Enhanced biodegradation of crude oil by constructed bacterial consortium comprising salt-tolerant petroleum degraders and biosurfactant producers. International Biodeterioration & Biodegradation, 154, 105047. Chodak, M., Gołębiewski, M., Morawska-Płoskonka, J., Kuduk, K., & Niklińska, M. (2013). Diversity of microorganisms from forest soils differently polluted with heavy metals. Applied Soil Ecology, 64, 7-14. Bong, C. W., Malfatti, F., Azam, F., Obayashi, Y., & Suzuki, S. (2010). The effect of zinc exposure on the bacteria abundance and proteolytic activity in seawater. Interdisciplinary studies on environmental chemistry—biological responses to contaminants. Terrapub, Tokyo, 57-63. Chunyan, X., Qaria, M. A., Qi, X., & Daochen, Z. (2023). The role of microorganisms in petroleum degradation: Current development and prospects. Science of The Total Environment, 865, 161112. Cui, J. Q., He, Q. S., Liu, M. H., Chen, H., Sun, M. B., & Wen, J. P. (2020). Comparative study on different remediation strategies applied in petroleum-contaminated soils. International journal of environmental research and public health, 17 (5), 1606. Eraky, M., Abou-Shanab, R. A. I., Salem, A. M., & Abdelgaffer, A. R. B. (2015). Petroleum hydrocarbon degradation potential of Ochrobactrum lupini isolated from BTEX enrichment soil. International Journal of Environment. 4 (3): 204-209. Gonzalez Henao, S., & Ghneim-Herrera, T. (2021). Heavy metals in soils and the remediation potential of bacteria associated with the plant microbiome. Frontiers in Environmental Science, 15. Hemmat-Jou, M. H., Safari-Sinegani, A. A., Mirzaie-Asl, A., & Tahmourespour, A. A. (2018). Analysis of microbial communities in heavy metals-contaminated soils using the metagenomic approach. Ecotoxicology, 27, 1281-1291. Ibrahim, H. M. (2016). Biodegradation of used engine oil by novel strains of Ochrobactrum anthropi HM-1 and Citrobacter freundii HM-2 isolated from oil-contaminated soil. 3 Biotech, 6 (2), 226. Isaac, P., Martínez, F. L., Bourguignon, N., Sánchez, L. A., & Ferrero, M. A. (2015). Improved PAHs removal performance by a defined bacterial consortium of indigenous Pseudomonas and actinobacteria from Patagonia, Argentina. International Biodeterioration & Biodegradation, 101, 23-31. Jadoon, S., & Malik, A. D. N. A. (2017). DNA damage by heavy metals in animals and human beings: an overview. Biochem Pharmacol, 6 (3), 1-8. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology, 7 (2), 60. Kalami, R., & Pourbabaee, A.A. (2021). Investigating the potential of bioremediation in aged oil-polluted hypersaline soils in the south oilfields of Iran. Environmental Monitoring and Assessment. 193 (8), 517. doi: 10.1007/s10661-021-09304-7. PMID: 34309727. Kalvandi, S., Garousin, H., Pourbabaee, A. A., & Alikhani, H. A. (2022a). Formulation of a culture medium to optimize the production of lipopeptide biosurfactant by a new isolate of Bacillus sp.: a soil heavy metal mitigation approach. Frontiers in Microbiology, 214. Kalvandi, S., Garousin, H., Pourbabaee, A. A., & Farahbakhsh, M. (2022b). The release of petroleum hydrocarbons from a saline-sodic soil by the new biosurfactant-producing strain of Bacillus sp. Scientific Reports, 12 (1), 19770. Kumar, C. G., Sujitha, P., Mamidyala, S. K., Usharani, P., Das, B., & Reddy, C. R. (2014). Ochrosin, a new biosurfactant produced by halophilic Ochrobactrum sp. strain BS-206 (MTCC 5720): purification, characterization and its biological evaluation. Process Biochemistry, 49 (10), 1708-1717. Li, X., Meng, D., Li, J., Yin, H., Liu, H., Liu, X., ... & Yan, M. (2017). Response of soil microbial communities and microbial interactions to long-term heavy metal contamination. Environmental Pollution, 231, 908-917. Li, Q., You, P., Hu, Q., Leng, B., Wang, J., Chen, J., ... & Ouyang, K. (2020). Effects of co-contamination of heavy metals and total petroleum hydrocarbons on soil bacterial community and function network reconstitution. Ecotoxicology and Environmental Safety, 204, 111083. Margesin, R., Płaza, G. A., & Kasenbacher, S. (2011). Characterization of bacterial communities at heavy-metal-contaminated sites. Chemosphere, 82 (11), 1583-1588. Ortega-González, D. K., Cristiani-Urbina, E., Flores-Ortíz, C. M., Cruz-Maya, J. A., Cancino-Díaz, J. C., & Jan-Roblero, J. (2015). Evaluation of the removal of pyrene and fluoranthene by Ochrobactrum anthropi, Fusarium sp. and their coculture. Applied biochemistry and biotechnology, 175, 1123-1138. Peng, H., Xie, W., Li, D., Wu, M., Zhang, Y., Xu, H., ... & Liu, W. (2019). Copper-resistant mechanism of Ochrobactrum MT180101 and its application in membrane bioreactor for treating electroplating wastewater. Ecotoxicology and Environmental Safety, 168, 17-26. Poszytek, K., Karczewska-Golec, J., Ciok, A., Decewicz, P., Dziurzynski, M., Gorecki, A., ... & Dziewit, L. (2018). Genome-guided characterization of Ochrobactrum sp. POC9 enhancing sewage sludge utilization—Biotechnological potential and biosafety considerations. International Journal of Environmental Research and Public Health, 15 (7), 1501. Primeia, S., Inoue, C., & Chien, M. F. (2020). Potential of biosurfactants’ production on degrading heavy oil by bacterial consortia obtained from tsunami-induced oil-spilled beach areas in Miyagi, Japan. Journal of Marine Science and Engineering, 8 (8), 577. Pugazhendi, A., Qari, H., Basahi, J. M. A. B., Godon, J. J., & Dhavamani, J. (2017). Role of a halothermophilic bacterial consortium for the biodegradation of PAHs and the treatment of petroleum wastewater at extreme conditions. International Biodeterioration & Biodegradation, 121, 44-54. Rahman, K.S.M., Thahira-Rahman, J., Lakshmanaperumalsamy, P., & Banat, IM. 2002. Towards efficient crude oil degradation by a mixed bacterial consortium. Bioresource technology, 85(3), pp.257-261. Rashid, M. I., Mujawar, L. H., Shahzad, T., Almeelbi, T., Ismail, I. M., & Oves, M. (2016). Bacteria and fungi can contribute to nutrients bioavailability and aggregate formation in degraded soils. Microbiological research, 183, 26-41. Ron, E. Z., & Rosenberg, E. (2014). Enhanced bioremediation of oil spills in the sea. Current Opinion in biotechnology, 27, 191-194. Roszak, M., Jabłońska, J., Stachurska, X., Dubrowska, K., Kajdanowicz, J., Gołębiewska, M., ... & Karakulska, J. (2021). Development of an autochthonous microbial consortium for enhanced bioremediation of PAH-contaminated soil. International Journal of Molecular Sciences, 22 (24), 13469. Safahieh, A., Lamoochi, R., Salamat, N., & Abyar, H. (2014) Isolation and Identification of Bacillus firmus from the Marine Sediments of Imam Khomeini Port and Study Its Ability in Biosorption of Lead. Journal of Oceanography, 5 (17):11-19. (In Persian) Shahaliyan, F., Safahieh, A. R., & Abyar, H. (2013). Isolation and Identification of Nickel Resistant Bacteria in Khor Mousa Sediments and Study of Bacterial Capability in Nickel Biosorption. Journal of Environmental Studies, 39 (2), 93-100. (In Persian). Sharma, B., & Shukla, P. (2021). A comparative analysis of heavy metal bioaccumulation and functional gene annotation towards multiple metal resistant potential by Ochrobactrum intermedium BPS-20 and Ochrobactrum ciceri BPS-26. Bioresource Technology, 320, 124330. Sales da Silva, I. G., Gomes de Almeida, F. C., Padilha da Rocha e Silva, N. M., Casazza, A. A., Converti, A., & Asfora Sarubbo, L. (2020). Soil bioremediation: Overview of technologies and trends. Energies, 13 (18), 4664. Singh, S., Parihar, P., Singh, R., Singh, V. P., & Prasad, S. M. (2016). Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers in plant science, 6, 1143. Slepecky R.A, Hemphill H.E. The Prokaryotes, 3rd Ed.. New York: Springer; 2006 Syed, S., & Chinthala, P. (2015). Heavy metal detoxification by different Bacillus species isolated from solar salterns. Scientifica, 2015 (Article ID 319760):1- 8. Tiwari, B., Manickam, N., Kumari, S., & Tiwari, A. (2016). Biodegradation and dissolution of polyaromatic hydrocarbons by Stenotrophomonas sp. Bioresource Technology, 216, 1102-1105. Villagrasa, E., Palet, C., López-Gómez, I., Gutiérrez, D., Esteve, I., Sánchez-Chardi, A., & Solé, A. (2021). Cellular strategies against metal exposure and metal localization patterns linked to phosphorus pathways in Ochrobactrum anthropi DE2010. Journal of Hazardous Materials, 402, 123808. Xue, J., Yu, Y., Bai, Y., Wang, L., & Wu, Y. (2015). Marine oil-degrading microorganisms and biodegradation process of petroleum hydrocarbon in marine environments: a review. Current microbiology, 71, 220-228. Wang, S., Wang, D., Yu, Z., Dong, X., Liu, S., Cui, H., & Sun, B. (2021). Advances in research on petroleum biodegradability in soil. Environmental Science: Processes & Impacts, 23 (1), 9-27. Yang, Y., Wang, J., Liao, J., Xie, S., & Huang, Y. (2015). Abundance and diversity of soil petroleum hydrocarbon-degrading microbial communities in oil exploring areas. Applied microbiology and biotechnology, 99, 1935-1946. Zhang, X., Zhang, Q., Yan, T., Jiang, Z., Zhang, X., & Zuo, Y. Y. (2015). Quantitatively predicting bacterial adhesion using surface free energy determined with a spectrophotometric method. Environmental science & technology, 49 (10), 6164-6171. | ||
آمار تعداد مشاهده مقاله: 305 تعداد دریافت فایل اصل مقاله: 183 |