تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,420 |
تعداد دریافت فایل اصل مقاله | 97,206,074 |
حذف فسفات، فلوراید و کلسیم از شیرابه دفنگاه زباله سراوان با استفاده از فرایند رسوب زیستی کلسیم کربنات | ||
تحقیقات آب و خاک ایران | ||
دوره 54، شماره 10، دی 1402، صفحه 1431-1445 اصل مقاله (1.54 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.364169.669556 | ||
نویسندگان | ||
فاطمه مهدی پور1؛ نسرین قربان زاده2؛ محمدباقر فرهنگی* 2؛ مریم خلیلی راد1 | ||
1گروه علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران. | ||
2گروه علوم خاک، دانشکده علوم کشاورزی، دانشگاه گیلان، رشت، ایران | ||
چکیده | ||
در سالهای اخیر روشهای دوستدار محیطزیست در مدیریت مواد شیمیایی خطرناک موجود در شیرابه مکانهای دفن زباله به منظور جلوگیری از ورود آنها به منابع آبهای سطحی و زیرزمینی موردتوجه قرار گرفته است. این پژوهش در سال 1401 در دانشگاه گیلان انجام شد. ابتدا یک باکتری اورئولیتیک با توانایی ترسیب کلسیم کربنات از شیرابه دفنگاه سراوان جداسازی شد. سپس پتانسیل آن در کنار باکتری شاخص اسپوروسارسینا پاستوری در حذف یونهای فسفات، کلسیم و فلوراید از شیرابه در فرایند رسوب زیستی کلسیم کربنات (MICP) بررسی شد. آزمایش بهصورت فاکتوریل 2×2×3 در قالب طرح کاملا تصادفی با سه تکرار (36 نمونه) اجرا شد. فاکتورها شامل باکتری سیمان کننده در سه سطح (بدون مایهزنی، مایهزنی با سویه جدا شده از شیرابه و مایهزنی با اسپوروسارسینا پاستوری)، اوره در دو سطح (صفر و دو درصد) و کلسیم کلراید در دو سطح (صفر و 50 mM) به عنوان فاکتور سوم بودند. بیشترین درصد حذف فسفات (93 درصد) در تیمار بدون باکتری و اوره و در حضور کلسیم کلراید مشاهده شد. اما برای حذف فلوراید به حضور باکتریهای اورئولیتیک نیاز بود به طوریکه در تیمارهای دارای باکتری شاخص و جدا شده در حضور اوره و کلسیم کلراید به ترتیب 77 و 48 درصد فلوراید حذف شد که به ترتیب 4/14 و 9 برابر حذف فلوراید در تیمار شاهد بود. در تیمارهای دارای باکتری شاخص و جدا شده به ترتیب 93 و 90 درصد کلسیم شیرابه حذف شد. اگرچه درصد حذف فسفات، کلسیم و فلوراید در حضور باکتری شاخص نسبت به باکتری جدا شده بیشتر بود اما تفاوت چشمگیری بین آنها در حذف یونها دیده نشد. بنابراین، با توجه به اینکه استفاده از ریزجانداران بومی، علاوه بر کاهش هزینهها، نگرانی زیست محیطی بسیار کمتری را نیز نسبت به گونههای شاخص ایجاد میکنند، میتوان از آنها برای حذف مواد خطرناک موجود در شیرابه در فرایند MICP استفاده کرد. | ||
کلیدواژهها | ||
اسپوروسارسینا پاستئوری؛ اوره؛ ریزجانداران بومی؛ معدنی شدن زیستی | ||
مراجع | ||
Achal, V., Mukherjee, A. Basu, P.C., & Reddy, M. S. (2009). Strain improvement of Sporosarcina pasteurii for enhanced urease and calcite production. Journal of Industrial Microbiology and Biotechnology, 36, 981-988. https://doi.org/10.1007/s10295-009-0578-z. Alef, K., & Nannipieri, P. (1995). Methods in Applied Soil Microbiology and Biochemistry. Academic Press. Ali, A., Wu, Z. Z., Li, M., & Su, J. F. (2021). Carbon to nitrogen ratios influence the removal performance of calcium, fluoride, and nitrate by Acinetobacter H12 in a quartz sandfilled biofilm reactor. Bioresource Technology, 333, 125154. https://doi.org/10.1016/j.biortech.2021.125154 Al-Thawadi, SM. (2008). High strength in situ biocementation of soil by calcite precipitating locally isolated ureolytic bacteria. Ph.D. thesis. Perth Western Australia. Mudroch University. 264. Ansari, A., Peña-Bahamonde, J., Fanourakis, S. K., Hu, Y., & Rodrigues, D. F. (2020). Microbially-induced mineral scaling in desalination conditions: Mechanisms and effects of commercial antiscalants. Water research, 179, 115863. https://doi.org/10.1016/j.watres.2020.115863. APHA, AWWA, WEF. (1998). Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC. Banerjee, A. (2015). Groundwater fluoride contamination: A reappraisal. Geoscience Frontier, 6 (2), 277–284. https://doi.org/10.1016/j.gsf.2014.03.003 Burt, C. D., Cabrera, M. L., Rothrock Jr, M. J., & Kissel, D. E. (2018). Urea hydrolysis and calcium carbonate precipitation in gypsum‐amended broiler litter. Journal of Environmental Quality, 47(1), 162-169. https://doi.org/10.2134/jeq2017.08.0337. Chen, C. L., Park, S. W., Su, J. F., Yu, Y. H., Heo, J. E., Kim, K. D., & Huang, C. (2019). The adsorption characteristics of fluoride on commercial activated carbon treated with quaternary ammonium salts (Quats). Science of the Total Environment, 693, 133605. https://doi.org/10.1016/j.scitotenv.2019.133605. Deng, L., Liu, Y., Huang, T., & Sun, T. (2016). Fluoride removal by induced crystallization using fluorapatite/calcite seed crystals. Chemical Engineering Journal, 287, 83-91. https://doi.org/10.1016/j.cej.2015.11.011. De Muynck, W., De Belie, N., & Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: a review. Ecological Engineering, 36(2), 118-136. https://doi.org/10.1016/j.ecoleng.2009.02.006. Farhangi, M. B., Ghasemzadeh, Z., Ghorbanzadeh, N., Khalilirad, M., & Unc, A. (2021). Phosphate removal from landfill leachate using ferric iron bioremediation under anaerobic condition. Journal of Material Cycles and Waste Management, 23, 1576–1587. https://doi.org/10.1007/s10163-021-01239-y Ganendra, G., De Muynck, W., Ho, A., Arvaniti, E. C., Hosseinkhani, B., Ramos, J. A., Rahier, H., & Boon, N. (2014). Formate oxidation-driven calcium carbonate precipitation by Methylocystis parvus OBBP. Applied and Environmental Microbiology, 80(15), 4659-4667. https://doi.org/10.1128/AEM.01349-14. Gogoi, S., Nath, S. K., Bordoloi, S., & Dutta, R. K. (2015). Fluoride removal from groundwater by limestone treatment in presence of phosphoric acid. Journal of Environmental Management, 152, 132-139. https://doi.org/10.1016/j.jenvman.2015.01.031. Gowthaman, S., Yamamoto, M., Nakashima, K., Ivanov, V., & Kawasaki, S. (2021). Calcium phosphate biocement using bone meal and acid urease: An eco-friendly approach for soil improvement. Journal of Cleaner Production, 319, 128782. https://doi.org/10.1016/j.jclepro.2021.128782. He, Y., Zhang, L., An, X., Wan, G., Zhu, W., & Luo, Y. (2019). Enhanced fluoride removal from water by rare earth (La and Ce) modified alumina: Adsorption isotherms, kinetics, thermodynamics and mechanism. Science of the Total Environment, 688, 184-198. https://doi.org/10.1016/j.scitotenv.2019.06.175. Huang H, Xiao D, Zhang Q, Ding L (2014) Removal of ammonia from landfill leachate by struvite precipitation with the use of low-cost phosphate and magnesium sources. Journal of Environmental Management, 145, 191–198. https:// doi. org/ 10. 1016/j. jenvm an. 2014. 06. 021. Kang, C. H., Han, S. H., Shin, Y., Oh, S. J., & So, J. S. (2014). Bioremediation of Cd by microbially induced calcite precipitation. Applied Biochemistry and Biotechnology, 172, 2907-2915. https://doi.org/10.1007/s12010-014-0737-1. Kang, S., Seo, J. T., Park, S. H., Jung, I. Y., Lee, C. Y., & Park, J. W. (2019). Qualitative analysis on crystal growth of synthetic hydroxyapatite influenced by fluoride concentration. Archives of Oral Biology, 104, 52-59. https://doi.org/10.1016/j.archoralbio.2019.05.022. Khalil, C., Al Hageh, C., Korfali, S., & Khnayzer, R. S. (2018). Municipal leachates health risks: Chemical and cytotoxicity assessment from regulated and unregulated municipal dumpsites in Lebanon. Chemosphere, 208, 1-13. https://doi.org/10.1016/j.chemosphere.2018.05.151. Lacson, C. F. Z., Lu, M. C., & Huang, Y. H. (2021). Fluoride-containing water: A global perspective and a pursuit to sustainable water defluoridation management-An overview. Journal of Cleaner Production, 280, 124236. https://doi.org/10.1016/j.jclepro.2020.124236. Lai, Y., Yu, J., Liu, S., Liu, J., Wang, R., & Dong, B. (2021). Experimental study to improve the mechanical properties of iron tailings sand by using MICP at low pH. Construction and Building Materials, 273, 121729. https://doi.org/10.1016/j.conbuildmat.2020.121729. Lambert, S. E., & Randall, D. G. (2019). Manufacturing bio-bricks using microbial induced calcium carbonate precipitation and human urine. Water Research, 160, 158-166. https://doi.org/10.1016/j.watres.2019.05.069. Leng, Y., & Soares, A. (2021). The mechanisms of struvite biomineralization in municipal wastewater. Science of the Total Environment, 799, 149261. https://doi.org/10.1016/j.scitotenv.2021.149261. Li, F., Jin, J., Shen, Z., Ji, H., Yang, M., & Yin, Y. (2020). Removal and recovery of phosphate and fluoride from water with reusable mesoporous Fe3O4@ mSiO2@ mLDH composites as sorbents. Journal of Hazardous Materials, 388, 121734. https://doi.org/10.1016/j.jhazmat.2019.121734. Liu, J., Su, J., Ali, A., Wang, Z., & Zhang, R. (2022). Potential of a novel facultative anaerobic denitrifying Cupriavidus sp. W12 to remove fluoride and calcium through calcium bioprecipitation. Journal of Hazardous Materials, 423, 126976. https://doi.org/10.1016/j.jhazmat.2021.126976. Liu, J., Peng, Y., Li, C., Gao, Z., & Chen, S. (2021). A characterization of groundwater fluoride, influencing factors and risk to human health in the southwest plain of Shandong Province, North China. Ecotoxicology and Environmental Safety, 207, 111512. https://doi.org/10.1016/j.ecoenv.2020.111512. Luo, H., Cheng, Y., He, D., & Yang, E. H. (2019). Review of leaching behavior of municipal solid waste incineration (MSWI) ash. Science of the Total Environment, 668, 90-103. https://doi.org/10.1016/j.scitotenv.2019.03.004. Maity, J. P., Hsu, C. M., Lin, T. J., Lee, W. C., Bhattacharya, P., Bundschuh, J., & Chen, C. Y. (2018). Removal of fluoride from water through bacterial-surfactin mediated novel hydroxyapatite nanoparticle and its efficiency assessment: adsorption isotherm, adsorption kinetic and adsorption thermodynamics. Environmental Nanotechnology, Monitoring & Management, 9, 18-28. https://doi.org/10.1016/j.enmm.2017.11.001. Mojiri, A., Zhou, J. L., Ratnaweera, H., Ohashi, A., Ozaki, N., Kindaichi, T., & Asakura, H. (2021). Treatment of landfill leachate with different techniques: an overview. Water Reuse, 11(1), 66-96. https://doi.org/10.2166/wrd.2020.079. Mukherjee, S., Sahu, P., & Halder, G. (2017). Microbial remediation of fluoride-contaminated water via a novel bacterium Providencia vermicola (KX926492). Journal of Environmental Management, 204, 413-423. https://doi.org/10.1016/j.jenvman.2017.08.051. Nath, S. K., & Dutta, R. K. (2010). Enhancement of limestone defluoridation of water by acetic and citric acids in fixed bed reactor. Clean–Soil, Air, Water, 38(7), 614-622. https://doi.org/10.1002/clen.200900209. Naveed, M., Duan, J., Uddin, S., Suleman, M., Hui, Y., & Li, H. (2020). Application of microbially induced calcium carbonate precipitation with urea hydrolysis to improve the mechanical properties of soil. Ecological Engineering, 153, 105885. https://doi.org/10.1016/j.ecoleng.2020.105885. Peng, D., Qiao, S., Luo, Y., Ma, H., Zhang, L., Hou, S., ... & Xu, H. (2020). Performance of microbial induced carbonate precipitation for immobilizing Cd in water and soil. Journal of Hazardous Materials, 400, 123116. https://doi.org/10.1016/j.jhazmat.2020.123116. Qian, C., Wang, R., Cheng, L., & Wang, J. (2010). Theory of Microbial Carbonate Precipitation and Its Application in Restoration of Cement‐based Materials Defects. Chinese Journal of Chemistry, 28(5), 847-857. https://doi.org/10.1002/cjoc.201090156. Qin, W., Wang, C. Y., Ma, Y. X., Shen, M. J., Li, J., Jiao, K., Tay, E.R., & Niu, L. N. (2020). Microbe‐mediated extracellular and intracellular mineralization: environmental, industrial, and biotechnological applications. Advanced Materials, 32(22), 1–39. https://doi.org/10.1002/adma.201907833. Rahman, Z. (2020). An overview on heavy metal resistant microorganisms for simultaneous treatment of multiple chemical pollutants at co-contaminated sites, and their multipurpose application. Journal of Hazardous Materials, 396, 122682. https://doi.org/10.1016/j.jhazmat.2020.122682. Rajasekar, A., Moy, C. K., Wilkinson, S., & Sekar, R. (2021). Microbially induced calcite precipitation performance of multiple landfill indigenous bacteria compared to a commercially available bacteria in porous media. Plos One, 16(7), e0254676. https://doi.org/10.1371/journal.pone.0254676. Shariatmadari, N., Askari Lasaki, B., Eshghinezhad, H., & Alidoust, P. (2018). Effects of landfill leachate on mechanical behaviour of adjacent soil: a case study of Saravan landfill, Rasht, Iran. International Journal of Civil Engineering, 16, 1503-1513. https://doi.org/10.1007/s40999-018-0311-2. Sposito, G. (2008). The chemistry of soils. Oxford university press. Sternitzke, V., Kaegi, R., Audinot, J. N., Lewin, E., Hering, J. G., & Johnson, C. A. (2012). Uptake of fluoride from aqueous solution on nano-sized hydroxyapatite: examination of a fluoridated surface layer. Environmental Science & Technology, 46(2), 802-809. https://doi.org/10.1021/es202750t. Su, J. F., Zhang, H., Huang, T. L., Hu, X. F., Chen, C. L., & Liu, J. R. (2019). The performance and mechanism of simultaneous removal of fluoride, calcium, and nitrate by calcium precipitating strain Acinetobacter sp. H12. Ecotoxicology and Environmental Safety, 187, 109855. https://doi.org/10.1016/j.ecoenv.2019.109855 Tang, S., Chang, X., Li, M., Ge, T., Niu, S., Wang, D., Jiang, Y.C., & Sun, S. (2021). Fabrication of calcium carbonate coated-stainless steel mesh for efficient oil-water separation via bacterially induced biomineralization technique. Chemical Engineering Journal, 405, 126597. https://doi.org/10.1016/j.cej.2020.126597. Terzis, D., & Laloui, L. (2019). A decade of progress and turning points in the understanding of bio-improved soils: A review. Geomechanics for Energy and the Environment, 19, 100116. https://doi.org/10.1016/j.gete.2019.03.001. Van Langerak, E. P. A., Hamelers, H. V. M., & Lettinga, G. (1997). Influent calcium removal by crystallization reusing anaerobic effluent alkalinity. Water Science and Technology, 36(6-7), 341-348. https://doi.org/10.1016/S0273-1223(97)00541-6. Wang, Z., Su, J., Ali, A., Zhang, R., Yang, W., Xu, L., & Zhao, T. (2021). Microbially induced calcium precipitation based simultaneous removal of fluoride, nitrate, and calcium by Pseudomonas sp. WZ39: Mechanisms and nucleation pathways. Journal of Hazardous Materials, 416, 125914. https://doi.org/10.1016/j.jhazmat.2021.125914. Wang, Z., Su, J., Ali, A., Zhang, R., Yang, W., Xu, L., Shi, J., & Gao, Z. (2022). Synergistic removal of fluoride from groundwater by seed crystals and bacteria based on microbially induced calcium precipitation. Science of the Total Environment, 806, 150341. https://doi.org/10.1016/j.scitotenv.2021.150341. Wimalasiri, A. V. K., Fernando, M. S., Williams, G. R., Dissanayake, D. P., de Silva, K. N., & de Silva, R. M. (2021). Microwave assisted accelerated fluoride adsorption by porous nanohydroxyapatite. Materials Chemistry and Physics, 257, 123712. https://doi.org/10.1016/j.matchemphys.2020.123712 Yan, H., Han, Z., Zhao, H., Pan, J., Zhao, Y., Tucker, M. E., Zhou, J.X., Yan, X.Y., Yang, H.Y., & Fan, D. (2020). The bio-precipitation of calcium and magnesium ions by free and immobilized Lysinibacillus fusiformis DB1-3 in the wastewater. Journal of Cleaner Production, 252, 119826. https://doi.org/10.1016/j.jclepro.2019.119826 Yin, T., Lin, H., Dong, Y., Li, B., He, Y., Liu, C., & Chen, X. (2021). A novel constructed carbonate-mineralized functional bacterial consortium for high-efficiency cadmium biomineralization. Journal of Hazardous Materials, 401, 123269. https://doi.org/10.1016/j.jhazmat.2020.123269. Zhu, F., Guo, Z., & Hu, X. (2020). Fluoride removal efficiencies and mechanism of schwertmannite from KMnO4/MnO2–Fe (II) processes. Journal of Hazardous Materials, 397, 122789. https://doi.org/10.1016/j.jhazmat.2020.122789. | ||
آمار تعداد مشاهده مقاله: 257 تعداد دریافت فایل اصل مقاله: 245 |