تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,122,858 |
تعداد دریافت فایل اصل مقاله | 97,231,057 |
Numerical simulation of matrix acidizing in carbonate formations using method of lines | ||
International Journal of Mining and Geo-Engineering | ||
مقاله 10، دوره 58، شماره 1، خرداد 2024، صفحه 97-104 اصل مقاله (831.45 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/ijmge.2023.369656.595130 | ||
نویسنده | ||
Saman Jahanbakhshi* | ||
School of Mining Engineering, College of Engineering, University of Tehran, Tehran, Iran | ||
چکیده | ||
In this study, a novel numerical approach is proposed to characterize the dissolution of rock minerals and wormhole propagation in carbonate rocks using the Darcy scale model. Accordingly, only the spatial variables of the governing partial differential equations are discretized, while the time variable remains continuous. Consequently, the partial differential equations are turned into ordinary ones, which are then numerically solved by high-order Runge-Kutta methods. The proposed approach is verified against the analytical solution in a 1D core model. Afterwards, it will be utilized to investigate the effect of multiple transport and reaction phenomena on the matrix acidizing in 2D carbonate formations. Also, the staggered grid technique is employed to accurately predict the wormhole patterns during several injection regimes. Compared to the previous studies, the proposed numerical approach is less complicated and straightforward. Furthermore, the computational cost is more affordable. | ||
کلیدواژهها | ||
Carbonate reservoirs؛ Matrix acidizing؛ Rock dissolution؛ Darcy scale model؛ Numerical simulation | ||
مراجع | ||
[1] Ahmed T., Reservoir engineering handbook, 5th ed., Gulf Professional Publishing, Boston, 2018. https://doi.org/10.1016/C2016-0-04718-6.
[2] Ganat T.A.A.O., Modern Pressure Transient Analysis of Petroleum Reservoirs Springer, 2023. https://doi.org/10.1007/978-3-031-28889-0.
[3] Schön J.H., Physical properties of rocks: Fundamentals and principles of petrophysics, Elsevier, 2015. https://doi.org/10.1029/97EO00363.
[4] Jia C., Sepehrnoori K., Huang Z., Zhang H., Yao J., Numerical studies and analysis on reactive flow in carbonate matrix acidizing, J Petrol Sci Eng, 201 (2021) 108487. https://doi.org/10.1016/j.petrol.2021.108487.
[5] Barri A., Hassan A., Mahmoud M., Carbonate Stimulation Using Chelating Agents: Improving the Treatment Performance by Optimizing the Fluid Properties, ACS omega, 7 (2022) 8938-8949. https://doi.org/10.1021/acsomega.1c07329.
[6] Tariq Z., Aljawad M.S., Hassan A., Mahmoud M., Al-Ramadhan A., Chelating agents as acid-fracturing fluids: experimental and modeling studies, Energy Fuels, 35 (2021) 2602-2618. https://doi.org/10.1021/acs.energyfuels.0c04045.
[7] Yoo H., Kim Y., Lee W., Lee J., An experimental study on acid-rock reaction kinetics using dolomite in carbonate acidizing, J Petrol Sci Eng, 168 (2018) 478-494. https://doi.org/10.1016/j.petrol.2018.05.041.
[8] Qiu X., Aidagulov G., Ghommem M., Edelman E., Brady D., Abbad M., Towards a better understanding of wormhole propagation in carbonate rocks: Linear vs. radial acid injection, J Petrol Sci Eng, 171 (2018) 570-583. https://doi.org/10.1016/j.petrol.2018.07.075.
[9] Wu Y., Salama A., Sun S., Parallel simulation of wormhole propagation with the Darcy–Brinkman–Forchheimer framework, Comput Geotech, 69 (2015) 564-577. https://doi.org/10.1016/j.compgeo.2015.06.021.
[10] Liu P., Yao J., Couples G.D., Ma J., Iliev O., 3-D modelling and experimental comparison of reactive flow in carbonates under radial flow conditions, Sci Rep, 7 (2017) 17711. https://doi.org/10.1038/s41598-017-18095-2.
[11] Maheshwari P., Ratnakar R., Kalia N., Balakotaiah V., 3-D simulation and analysis of reactive dissolution and wormhole formation in carbonate rocks, Chem Eng Sci, 90 (2013) 258-274. https://doi.org/10.1016/j.ces.2012.12.032.
[12] Daccord G., Lenormand R., Lietard O., Chemical dissolution of a porous medium by a reactive fluid—I. Model for the “wormholing” phenomenon, Chem Eng Sci, 48 (1993) 169-178. https://doi.org/10.1016/0009-2509(93)80293-Y.
[13] Hung K., Hill A., Sepehrnoori K., A mechanistic model of wormhole growth in carbonate matrix acidizing and acid fracturing, J Pet Technol, 41 (1989) 59-66. https://doi.org/10.2118/16886-PA.
[14] Tansey J., Balhoff M.T., Pore network modeling of reactive transport and dissolution in porous media, Transp Porous Media, 113 (2016) 303-327. https://doi.org/10.1007/s11242-016-0695-x.
[15] Algive L., Bekri S., Vizika O., Pore-network modeling dedicated to the determination of the petrophysical-property changes in the presence of reactive fluid, SPE J, 15 (2010) 618-633. https://doi.org/10.2118/124305-PA.
[16] Panga M.K., Ziauddin M., Balakotaiah V., Two‐scale continuum model for simulation of wormholes in carbonate acidization, AlChE J, 51 (2005) 3231-3248. https://doi.org/10.1002/aic.10574.
[17] Jia C., Huang Z., Sepehrnoori K., Yao J., Modification of two-scale continuum model and numerical studies for carbonate matrix acidizing, J Petrol Sci Eng, 197 (2021) 107972. https://doi.org/10.1016/j.petrol.2020.107972.
[18] Fredd C.N., Fogler H.S., Influence of transport and reaction on wormhole formation in porous media, AIChE J, 44 (1998) 1933-1949. https://doi.org/10.1002/aic.690440902.
[19] Hoefner M., Fogler H.S., Pore evolution and channel formation during flow and reaction in porous media, AlChE J, 34 (1988) 45-54. https://doi.org/10.1002/aic.690340107.
[20] Kalia N., Balakotaiah V., Effect of medium heterogeneities on reactive dissolution of carbonates, Chem Eng Sci, 64 (2009) 376-390. https://doi.org/10.1016/j.ces.2008.10.026.
[21] Chapra S.C., Canale R.P., Numerical methods for engineers, McGraw-Hill, New York, 2021.
[22] Mahmoodi A., Javadi A., Sola B.S., Porous media acidizing simulation: New two-phase two-scale continuum modeling approach, J Petrol Sci Eng, 166 (2018) 679-692. https://doi.org/10.1016/j.petrol.2018.03.072.
[23] Safari M., Gholami R., Jami M., Ananthan M.A., Rahimi A., Khur W.S., Developing a porosity-permeability relationship for ellipsoidal grains: A correction shape factor for Kozeny-Carman's equation, J Petrol Sci Eng, 205 (2021) 108896. https://doi.org/10.1016/j.petrol.2021.108896.
[24] Balakotaiah V., West D.H., Shape normalization and analysis of the mass transfer controlled regime in catalytic monoliths, Chem Eng Sci, 57 (2002) 1269-1286. https://doi.org/10.1016/S0009-2509(02)00059-3.
[25] Reiss J., A Family of Energy Stable, Skew-Symmetric Finite Difference Schemes on Collocated Grids: A Simple Way to Avoid Odd–Even Decoupling, J Sci Comput, 65 (2015) 821-838. https://doi.org/10.1007/s10915-015-9985-7.
[26] Tang H., Dong W., Agrawal A., A phenomenon of artificial odd–even grid oscillation and its presence in domain decomposition computation: Algebraic analysis and numerical illustration, J Comput Appl Math, 333 (2018) 404-427. https://doi.org/10.1016/j.cam.2017.10.017.
[27] Adegboye Z., Yahaya Y., Ahmed U., Direct integration of general fourth order ordinary differential equations using fifth order runge-kutta method, J Niger Math Soc, 39 (2020) 69-78.
[28] Sahu Q., Fahs M., Hoteit H., Optimization and uncertainty quantification method for reservoir stimulation through carbonate acidizing, ACS Omega, 8 (2022) 539-554. https://doi.org/10.1021/acsomega.2c05564.
| ||
آمار تعداد مشاهده مقاله: 327 تعداد دریافت فایل اصل مقاله: 319 |