تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,117,154 |
تعداد دریافت فایل اصل مقاله | 97,222,270 |
Superparamagnetic 3-mercaptopropionic acid capped FePt nanoparticles as delivery carriers of curcumin and their preferential cytotoxic effect on MDA-MB-231 breast cancer cells | ||
Journal of Food and Bioprocess Engineering | ||
مقاله 1، دوره 6، شماره 2، بهمن 2023، صفحه 1-7 اصل مقاله (1.8 M) | ||
نوع مقاله: Original research | ||
شناسه دیجیتال (DOI): 10.22059/jfabe.2023.368315.1157 | ||
نویسندگان | ||
Seyed-Behnam Ghaffari؛ Mohammad-Hossein Sarrafzadeh* | ||
School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran. | ||
چکیده | ||
In this study, functionalized superparamagnetic FePt nanoparticles (NPs) as carriers for targeted delivery of curcumin (CUR) to tumors were developed. FePt NPs were synthesized via the co-reduction of metal salts in the presence of 3-mercaptopropionic acid (MPA) to form water-dispersible carboxyl-terminated superparamagnetic NPs. CUR molecules were then conjugated to the particles through the activation of the carboxyl functional groups by 1,1′-carbonyldiimidazole (CDI) and the formation of ester bonds. XRD, FTIR, TEM, DLS, EDS and VSM were performed to evaluate the structure and properties of the particles. As-synthesized CUR-conjugated FePt NPs (CUR-FePt) were spherical core-shell structured particles with an average size of 17 nm, and the particles showed superparamagnetic properties even after the CUR conjugation. The in-vitro release results indicated relatively high CUR conjugation stability, and only 22% of CUR molecules were released after a 16 h period. MTT cytotoxicity evaluations showed that the conjugation of CUR to the surface of the particles did not alert the anticancer activity of CUR against MDA-MB-231 breast cancer cell lines. Moreover, no cytotoxic activity was observed against HEK293 normal cells. The results qualify the as-synthesized functionalized FePt NPs as potent candidates for magnetically guided drug delivery for cancer treatment. | ||
کلیدواژهها | ||
Magnetic nanomaterials؛ Targeted drug delivery؛ Iron-platinum؛ Cancer treatment؛ Curcumin | ||
مراجع | ||
Anderson, S. D., Gwenin, V. V., & Gwenin, C. D. (2019). Magnetic Functionalized Nanoparticles for Biomedical, Drug Delivery and Imaging Applications. Nanoscale Research Letters, 14(1), 188. https://doi.org/10.1186/s11671-019-3019-6 Attia, M. F., Anton, N., Wallyn, J., Omran, Z., & Vandamme, T. F. (2019). An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. Journal of Pharmacy and Pharmacology, 71(8), 1185–1198. https://doi.org/10.1111/jphp.13098 Avasthi, A., Caro, C., Pozo-Torres, E., Leal, M. P., & García-Martín, M. L. (2020). Magnetic Nanoparticles as MRI Contrast Agents. Topics in Current Chemistry, 378(3), 40. https://doi.org/10.1007/s41061- 020-00302-w Dey, S., & Sreenivasan, K. (2015). Conjugating curcumin to water soluble polymer stabilized gold nanoparticles via pH responsive succinate linker. Journal of Materials Chemistry B, 3(5), 824–833. https://doi.org/10.1039/C4TB01731E Ekladious, I., Colson, Y. L., & Grinstaff, M. W. (2019). Polymer–drug conjugate therapeutics: advances, insights and prospects. Nature Reviews Drug Discovery, 18(4), 273–294. https://doi.org/10.1038/s41573-018-0005-0 Fuchigami, T., Kitamoto, Y., & Namiki, Y. (2012). Size-tunable drugdelivery capsules composed of a magnetic nanoshell. Biomatter, 2(4), 313–320. https://doi.org/10.4161/biom.22617 Gao, Y., Zhang, X., Yin, Z., Qu, S., You, J., & Chen, N. (2010). Magnetic Properties of FePt Nanoparticles Prepared by a Micellar Method. Nanoscale Research Letters, 5(1), 1. https://doi.org/10.1007/s11671-009-9433-4 Ghaffari, S. B., & Moghaddam, J. (2012). Precipitation of various shapes of nanosized zinc oxide from zinc chloride solutions by neutralization with MgO and Ca(OH)2 as non-transparent basic agents. Journal of the Iranian Chemical Society, 9(5), 687–692. https://doi.org/10.1007/s13738-012-0095-2 Ghaffari, S.-B., Sarrafzadeh, M.-H., Fakhroueian, Z., & Khorramizadeh, M. R. (2019). Flower-like curcumin-loaded folic acid-conjugated ZnO-MPA- βcyclodextrin nanostructures enhanced anticancer activity and cellular uptake of curcumin in breast cancer cells. Materials Science and Engineering: C, 103, 109827. https://doi.org/10.1016/j.msec.2019.109827 Ghaffari, S.-B., Sarrafzadeh, M.-H., Fakhroueian, Z., Shahriari, S., & Khorramizadeh, M. R. (2017). Functionalization of ZnO nanoparticles by 3-mercaptopropionic acid for aqueous curcumin Ghaffari and Sarrafzadeh JFBE 6(2): 1-7,2023 7 delivery: Synthesis, characterization, and anticancer assessment. Materials Science and Engineering: C, 79, 465–472. https://doi.org/10.1016/j.msec.2017.05.065 Ghaffari, S.-B., Sarrafzadeh, M.-H., Salami, M., & Alvandi, A. (2024). A comparative study of the action mechanisms and development strategies of different ZnO-based nanostructures in antibacterial and anticancer applications. Journal of Drug Delivery Science and Technology, 91, 105221. https://doi.org/https://doi.org/10.1016/j.jddst.2023.105221 Ghaffari, S.-B., Sarrafzadeh, M.-H., Salami, M., & Khorramizadeh, M. R. (2020). A pH-sensitive delivery system based on N-succinyl chitosan-ZnO nanoparticles for improving antibacterial and anticancer activities of curcumin. International Journal of Biological Macromolecules, 151, 428–440. https://doi.org/10.1016/j.ijbiomac.2020.02.141 Ghazanfari, M. R., Kashefi, M., Shams, S. F., & Jaafari, M. R. (2016). Perspective of Fe 3 O 4 Nanoparticles Role in Biomedical Applications. Biochemistry Research International, 2016, 1–32. https://doi.org/10.1155/2016/7840161 Gibot, P., Tronc, E., Chanéac, C., Jolivet, J. P., Fiorani, D., & Testa, A. M. (2005). (Co,Fe)Pt nanoparticles by aqueous route; selfassembling, thermal and magnetic properties. Journal of Magnetism and Magnetic Materials, 290–291, 555–558. https://doi.org/10.1016/j.jmmm.2004.11.526 Ha, Y., Ko, S., Kim, I., Huang, Y., Mohanty, K., Huh, C., & Maynard, J. A. (2018). Recent Advances Incorporating Superparamagnetic Nanoparticles into Immunoassays. ACS Applied Nano Materials, 1(2), 512–521. https://doi.org/10.1021/acsanm.7b00025 Hooshmand, S., Hayat, S. M. G., Ghorbani, A., Khatami, M., Pakravanan, K., & Darroudi, M. (2021). Preparation and Applications of Superparamagnetic Iron Oxide Nanoparticles in Novel Drug Delivery Systems: An Overview. Current Medicinal Chemistry, 28(4), 777–799. https://doi.org/10.2174/0929867327666200123152006 Kadiri, V. M., Bussi, C., Holle, A. W., Son, K., Kwon, H., Schütz, G., Gutierrez, M. G., & Fischer, P. (2020). Biocompatible Magnetic Micro‐ and Nanodevices: Fabrication of FePt Nanopropellers and Cell Transfection. Advanced Materials, 32(25). https://doi.org/10.1002/adma.202001114 Lai, S.-M., Tsai, T.-Y., Hsu, C.-Y., Tsai, J.-L., Liao, M.-Y., & Lai, P.-S. (2012). Bifunctional Silica-Coated Superparamagnetic FePt Nanoparticles for Fluorescence/MR Dual Imaging. Journal of Nanomaterials, 2012, 1–7. https://doi.org/10.1155/2012/631584 Liu, Y., Yang, K., Cheng, L., Zhu, J., Ma, X., Xu, H., Li, Y., Guo, L., Gu, H., & Liu, Z. (2013). PEGylated FePt@Fe2O3 core-shell magnetic nanoparticles: Potential theranostic applications and in vivo toxicity studies. Nanomedicine: Nanotechnology, Biology and Medicine, 9(7), 1077–1088. https://doi.org/10.1016/j.nano.2013.02.010 Mehdipour Biregani, Z., & Gharachorloo, M. (2020). Curcumin as a bioactive compound: biological properties and encapsulation methods. Journal of Food and Bioprocess Engineering, 3(1), 79– 86. https://doi.org/10.22059/jfabe.2020.76608 Meiguni, M. S. M., Salami, M., Rezaei, K., Aliyari, M. A., Ghaffari, S.-B., Emam-Djomeh, Z., Kennedy, J. F., & Ghasemi, A. (2023). Fabrication and characterization of a succinyl mung bean protein and arabic gum complex coacervate for curcumin encapsulation. International Journal of Biological Macromolecules, 224, 170– 180. https://doi.org/10.1016/j.ijbiomac.2022.10.113 Mirmohammad Meiguni, M. S., Salami, M., Rezaei, K., Ghaffari, S., Aliyari, M. A., Emam‐Djomeh, Z., Barazandegan, Y., & Gruen, I. (2022). Curcumin‐loaded complex coacervate made of mung bean protein isolate and succinylated chitosan as a novel medium for curcumin encapsulation. Journal of Food Science, 87(11), 4930–4944. https://doi.org/10.1111/1750-3841.16341 Mohammadian, M., Dabbagh Moghaddam, A., Almasi, L., Bohlooli, S., & Sharifan, A. (2021). The enrichment of emergency food rations with complexes made of curcumin/quercetin-whey protein nanofibrils to improve their antioxidant activity. Journal of Food and Bioprocess Engineering, 4(1), 63–68. https://doi.org/10.22059/jfabe.2021.316882.1079 Nissinen, T., Näkki, S., Latikka, M., Heinonen, M., Liimatainen, T., Xu, W., Ras, R. H. A., Gröhn, O., Riikonen, J., & Lehto, V.-P. (2014). Facile synthesis of biocompatible superparamagnetic mesoporous nanoparticles for imageable drug delivery. Microporous and Mesoporous Materials, 195, 2–8. https://doi.org/10.1016/j.micromeso.2014.04.014 Pham, X. N., Nguyen, T. P., Pham, T. N., Tran, T. T. N., & Tran, T. V. T. (2016). Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery. Advances in Natural Sciences: Nanoscience and Nanotechnology, 7(4), 045010. https://doi.org/10.1088/2043- 6262/7/4/045010 Salamani, A., Merrouche, A., Telli, L., Gómez-Romero, P., & Huertas, Z. C. (2018). Synthesis and Caracterization of Mesoporous FePO4 as Positive Electrode Materials for Lithium Batteries. Surface Engineering and Applied Electrochemistry, 54(1), 55–63. https://doi.org/10.3103/S106837551801012X Shi, Y., Lin, M., Jiang, X., & Liang, S. (2015). Recent Advances in FePt Nanoparticles for Biomedicine. Journal of Nanomaterials, 2015, 1–13. https://doi.org/10.1155/2015/467873 Soomro, R. A., Nafady, A., Sirajuddin, Sherazi, S. T. H., Kalwar, N. H., Shah, M. R., & Hallam, K. R. (2015). Catalytic Reductive Degradation of Methyl Orange Using Air Resilient Copper Nanostructures. Journal of Nanomaterials, 2015, 1–12. https://doi.org/10.1155/2015/136164 Sun, C., Lee, J. S. H., & Zhang, M. (2008). Magnetic nanoparticles in MR imaging and drug delivery. Advanced Drug Delivery Reviews, 60(11), 1252–1265. https://doi.org/10.1016/j.addr.2008.03.018 Sun, S. (2006). Recent Advances in Chemical Synthesis, Self-Assembly, and Applications of FePt Nanoparticles. Advanced Materials, 18(4), 393–403. https://doi.org/10.1002/adma.200501464 Teow, S.-Y., Liew, K., Ali, S. A., Khoo, A. S.-B., & Peh, S.-C. (2016). Antibacterial Action of Curcumin against Staphylococcus aureus : A Brief Review. Journal of Tropical Medicine, 2016, 1– 10. https://doi.org/10.1155/2016/2853045 Vo, N. T., Ngo, H. D., Do Thi, N. P., Nguyen Thi, K. P., Duong, A. P., & Lam, V. (2016). Stability Investigation of Ligand-Exchanged CdSe/ZnS-Y (Y = 3-Mercaptopropionic Acid or Mercaptosuccinic Acid) through Zeta Potential Measurements. Journal of Nanomaterials, 2016, 1–8. https://doi.org/10.1155/2016/8564648 Wang, H. L., Huang, Y., Zhang, Y., Hadjipanayis, G. C., Weller, D., & Simopoulos, A. (2007). Effects of annealing on the magnetic and structural properties of FePt nanoparticles prepared by chemical synthesis. Journal of Magnetism and Magnetic Materials, 310(1), 22–27. https://doi.org/10.1016/j.jmmm.2006.07.024 Wei, D.-H., Lin, T.-K., Liang, Y.-C., & Chang, H.-W. (2021). Formation and Application of Core–Shell of FePt-Au Magnetic–Plasmonic Nanoparticles. Frontiers in Chemistry, 9. https://doi.org/10.3389/fchem.2021.653718 Wiemer, K., Dörmbach, K., Slabu, I., Agrawal, G., Schrader, F., Caumanns, T., Bourone, S. D. M., Mayer, J., Steitz, J., Simon, U., & Pich, A. (2017). Hydrophobic superparamagnetic FePt nanoparticles in hydrophilic poly(N-vinylcaprolactam) microgels: a new multifunctional hybrid system. Journal of Materials Chemistry B, 5(6), 1284–1292. https://doi.org/10.1039/C6TB02342H Wu, Q., Liang, S., Zhou, Q., Wang, M., Zhu, Y., & Yang, X. (2015). Watersoluble l-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. International Journal of Nanomedicine, 2325. https://doi.org/10.2147/IJN.S75174 | ||
آمار تعداد مشاهده مقاله: 213 تعداد دریافت فایل اصل مقاله: 160 |