
تعداد نشریات | 162 |
تعداد شمارهها | 6,622 |
تعداد مقالات | 71,537 |
تعداد مشاهده مقاله | 126,863,445 |
تعداد دریافت فایل اصل مقاله | 99,905,715 |
تحلیل و ارزیابی انتشار جیوه به عنوان یک آلاینده محیط زیستی از بخش تولید برق کشور | ||
محیط شناسی | ||
مقاله 3، دوره 49، شماره 4، بهمن 1402، صفحه 421-436 اصل مقاله (1.06 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jes.2023.360488.1008419 | ||
نویسنده | ||
سعید نظری کودهی* | ||
ایران-تهران-پژوهشگاه نیرو-پژوهشکده انرژی و محیط زیست-گروه محیط زیست | ||
چکیده | ||
نیروگاههای حرارتی از مهمترین منابع انتشار جیوه می باشند. ترسیب جیوه به عنوان یک آلاینده محیط زیستی در طبیعت تاثیر منفی بر سلامت انسان دارد. مطابق ماده 8 کنوانسیون میناماتا کشورهای عضو موظف به تخمین انتشار جیوه از منابع انسان ساخت و ارائه بهترین روشهای کنترلی هستند. در این تحقیق تحلیل و ارزیابی انتشار جیوه از بخش تولید برق کشور در افق زمانی سال های 2011 تا 2021 با استفاده از دادههای سوخت مصرفی نیروگاهها، جعبه ابزار ارائه شده توسط UNEP و مدل STIRPAT انجام شده است. مطابق نتایج این تحقیق، میزان میانگین انتشار جیوه و ضریب انتشار جیوه در بخش تولید برق کشور در بازه زمانی مورد مطالعه به ترتیبkg 6/505 و kg/TWh 85/1 بوده است. میانگین ضریب انتشار جیوه برای گاز طبیعی، مازوت و گازوئیل به ترتیبkg/TWh 05/0، kg/TWh 14 و kg/TWh 29/1 محاسبه شده است. میانگین هزینه خارجی ناشی از انتشار جیوه در حدودU$/TWh 67/2616 و US$/TWh 11/5931 به ترتیب با لحاظ حداقل میزان مواجه و بدون لحاظ حداقل میزان مواجه محاسبه گردیده است. نتایج مدل STIRPAT نشان داد که افزایش یک درصدی عواملی مشتمل بر جمعیت ، سهم تولید برق از مصرف گاز طبیعی و سهم تولید برق از مصرف سوختهای مایع موجب افزایش به ترتیب 83/14، 3/0 و 49/1 درصدی در میزان انتشار جیوه شده است. همچنین افزایش یک درصدی عواملی مشتمل بر تولید ناخالص ملی، شدت تولید انرژی الکتریکی و سهم تولید برق با استفاده از منابع غیر فسیلی موجب کاهش به ترتیب 8/4، 74/4 و 15/0 درصدی در میزان انتشار جیوه گردیده است. | ||
کلیدواژهها | ||
انتشار جیوه؛ فاکتور انتشار؛ مدل STIRPAT؛ نیروگاه های حرارتی؛ هزینه های خارجی | ||
مراجع | ||
Agarwalla, H., Senapati, R. N., & Das, T. B. (2021). Mercury emissions and partitioning from Indian coal-fired power plants. Journal of Environmental Sciences, 100, 28-33. https://doi.org/10.1016/j.jes.2020.06.035.
Bourtsalas, A. T., & Themelis, N. J. (2019). Major sources of mercury emissions to the atmosphere: The US case. Waste Management, 85, 90-94. https://doi.org/10.1016/j.wasman.2018.12.008.
Commission for Environmental Cooperation. (2023). North American Power Plant Air Emissions. CEC. http://www. cec.org/sites/default/napp/en/index.php
Charvát, P., Klimeš, L., Pospíšil, J., Klemeš, J. J., & Varbanov, P. S. (2020). An overview of mercury emissions in the energy industry-A step to mercury footprint assessment. Journal of Cleaner Production, 267, 122087. https://doi.org/10.1016/j.jclepro.2020.122087.
Chen, Y., & Mu, H. (2023). Analysis of influencing factors of CO2 emissions based on different coal dependence zones in China. Economic Research-Ekonomska Istraživanja, 36(2), 2177182. https://doi.org/10.1080/1331677X. 2023.2177182.
Chekouri, S. M., Chibi, A., & Benbouziane, M. (2020). Examining the driving factors of CO2 emissions using the STIRPAT model: the case of Algeria. International Journal of Sustainable Energy, 39(10), 927-940. https://doi.org/10.1080/14786451.2020.1770758.
Chou, C. P., Chiu, C. H., Chang, T. C., & Hsi, H. C. (2021). Mercury speciation and mass distribution of coal-fired power plants in Taiwan using different air pollution control processes. Journal of the Air & Waste Management Association, 71(5), 553-563. https://doi.org/10.1080/10962247.2020.1860158.
Dabrowski, J. M., Ashton, P. J., Murray, K., Leaner, J. J., & Mason, R. P. (2008). Anthropogenic mercury emissions in South Africa: Coal combustion in power plants. Atmospheric Environment, 42(27), 6620-6626. https://doi.org/10.1016/j.atmosenv.2008.04.032.
Environmental Protection Agency. (2023). Health Effects of Exposures to Mercury. EPA. https://www.epa.gov/ mercury/ health-effects-exposures-mercury.
Environmental Protection Agency. (2023). AP-42: Compilation of Air Emissions Factors. EPA. https://www.epa.gov/air-emissions-factors-and-quantification/ap-42-compilation-air-emissions-factors.
Fan, Y., Liu, L. C., Wu, G., & Wei, Y. M. (2006). Analyzing impact factors of CO2 emissions using the STIRPAT model. Environmental Impact Assessment Review, 26(4), 377-395. https://doi.org/10.1016/j.eiar.2005.11.007.
Government of Canada. (2017). Canadian mercury science assessment: summary of key results. GC. https://www. canada. ca/en/environment-climate-change/services/pollutants/mercury-environment/science-assessment-summary-key-results.html
Glodek, A., & Pacyna, J. M. (2009). Mercury emission from coal-fired power plants in Poland. Atmospheric Environment, 43(35), 5668-5673. https://doi.org/10.1016/j.atmosenv.2009.07.041.
Huang, M. H., Chen, W. H., Trinh, M. M., & Chang, M. B. (2023). Mass flows and characteristic of mercury emitted from coal-fired power plant equipped with seawater flue gas desulphurization. Sustainable Environment Research, 33(1), 1-10. https://doi.org/10.1186/s42834-023-00168-9.
Iran Power Generation and Transmission Company (TAVANIR). (2021). Detailed statistics of Iran’s electricity industry (In Persian). Tavanir. https://amar.tavanir.org.ir/
Iran Power Generation and Transmission Company (TAVANIR). (2023). Detailed statistics of Iran’s electricity industry (In Persian). Tavanir. https://amar.tavanir.org.ir/
Kim, J. H., Park, J. M., Lee, S. B., Pudasainee, D., & Seo, Y. C. (2010). Anthropogenic mercury emission inventory with emission factors and total emission in Korea. Atmospheric Environment, 44(23), 2714-2721. https://doi.org/10.1016/j.atmosenv.2010.04.037.
Li, B., & Wang, H. (2021). Effect of flue gas purification facilities of coal-fired power plant on mercury emission. Energy Reports, 7, 190-196. https://doi.org/10.1016/j.egyr.2021.01.094.
Li, L., & Li, Y. (2023). The Spatial Relationship between CO2 Emissions and Economic Growth in the Construction Industry: Based on the Tapio Decoupling Model and STIRPAT Model. Sustainability, 15(1), 528. https://doi.org/10.3390/su15010528.
Liu, K., Wang, S., Wu, Q., Wang, L., Ma, Q., Zhang, L., ... & Hao, J. (2018). A highly resolved mercury emission inventory of Chinese coal-fired power plants. Environmental science & technology, 52(4), 2400-2408. https://doi.org/10.1021/acs.est.7b06209.
Liu, X., Wang, X., & Meng, X. (2023). Carbon Emission Scenario Prediction and Peak Path Selection in China. Energies, 16(5), 2276. https://doi.org/10.3390/en16052276.
Lohwasser, J., & Schaffer, A. (2023). The varying roles of the dimensions of affluence in air pollution: a regional STIRPAT analysis for Germany. Environmental Science and Pollution Research, 30(8), 19737-19748. https://doi.org/10.1007/s11356-022-23519-2.
MacFarlane, S., Fisher, J. A., Horowitz, H. M., & Shah, V. (2022). Two decades of changing anthropogenic mercury emissions in Australia: inventory development, trends, and atmospheric implications. Environmental Science: Processes & Impacts, 24(9), 1474-1493. https://doi.org/10.1039/D2EM00019A.
Masekoameng, K. E., Leaner, J., & Dabrowski, J. (2010). Trends in anthropogenic mercury emissions estimated for South Africa during 2000–2006. Atmospheric Environment, 44(25), 3007-3014. https://doi.org/10.1016/j.atmosenv. 2010.05.006.
Minamata Convention on Mercury. (2021). Minamata Convention on Mercury - Text and Annexes. MCM. https:// mercuryconvention.org/en
Ojaghlou, M., Ugurlu, E., Kadłubek, M., & Thalassinos, E. (2023). Economic Activities and Management Issues for the Environment: An Environmental Kuznets Curve (EKC) and STIRPAT Analysis in Turkey. Resources, 12(5), 57. https://doi.org/10.3390/resources12050057.
Pilar, L., Borovec, K., Szeliga, Z., & Górecki, J. (2021). Mercury emission from three lignite-fired power plants in the Czech Republic. Fuel Processing Technology, 212, 106628. https://doi.org/10.1016/j.fuproc.2020.106628.
Pirrone, N., & Mason, R. (2009). Mercury fate and transport in the global atmosphere. Berlin, Springer.
Romanov, A., Sloss, L., & Jozewicz, W. (2012). Mercury emissions from the coal-fired energy generation sector of the Russian Federation. Energy & fuels, 26(8), 4647-4654. https://doi.org/10.1021/ef300398q.
Skånberg, K., & Svenfelt, Å. (2022). Expanding the IPAT identity to quantify backcasting sustainability scenarios. Futures & Foresight Science, 4(2), 116. https://doi.org/10.1002/ffo2.116.
Si, M., Tarnoczi, T. J., Wiens, B. M., & Du, K. (2019). Development of predictive emissions monitoring system using open source machine learning library–keras: A case study on a cogeneration unit. IEEE Access, 7, 113463-113475. https://doi.org/10.1109/ACCESS.2019.2930555.
Spadaro, J. V., & Rabl, A. (2008). Global health impacts and costs due to mercury emissions. Risk Analysis: An
International Journal, 28(3), 603-613. https://doi.org/10.1111/j.1539-6924.2008.01041.x.
Sun, X., Gingerich, D. B., Azevedo, I. L., & Mauter, M. S. (2019). Trace element mass flow rates from US coal fired power plants. Environmental science & technology, 53(10), 5585-5595. https://doi.org/10.1021/acs.est.9b01039.
Thepanondh, S., & Tunlathorntham, V. (2020). Appropriate scenarios for mercury emission control from coal-fired power plant in Thailand: emissions and ambient concentrations analysis. Heliyon, 6(6), e04197. https:// doi.org/ 10.1016/j.heliyon.2020.e04197.
Thao, P. T. B., Pimonsree, S., Suppoung, K., Bonnet, S., Junpen, A., & Garivait, S. (2021). Development of an anthropogenic atmospheric mercury emissions inventory in Thailand in 2018. Atmospheric Pollution Research, 12(9), 101170. https://doi.org/10.1016/j.apr.2021.101170.
Thio, E., Tan, M., Li, L., Salman, M., Long, X., Sun, H., & Zhu, B. (2021). The estimation of influencing factors for carbon emissions based on EKC hypothesis and STIRPAT model: Evidence from top 10 countries. Environment, Development and Sustainability, 24, 11226–11259. https://doi.org/10.1007/s10668-021-01905-z.
United Nations Environment Programme. (2023). Mercury Inventory Toolkit. UNEP. https://www.unep.org/explore-topics/chemicals-waste/what-we-do/mercury/mercury-inventory-toolkit
Wei, Z., Wei, K., & Liu, J. (2023). Decoupling relationship between carbon emissions and economic development and prediction of carbon emissions in Henan Province: based on Tapio method and STIRPAT model. Environmental Science and Pollution Research, 30(18), 52679-52691. https://doi.org/10.1007/s11356-023-26051-z.
World Bank. (2023). The World Bank Data. WB. https://data.worldbank.org/indicator/SP.POP.TOTL
Wu, Q., Wang, S., Liu, K., Li, G., & Hao, J. (2018). Emission-limit-oriented strategy to control atmospheric mercury emissions in coal-fired power plants toward the implementation of the Minamata Convention. Environmental science & technology, 52(19), 11087-11093.
Wu, Z., Ye, H., Shan, Y., Chen, B., & Li, J. (2020). A city-level inventory for atmospheric mercury emissions from coal combustion in China. Atmospheric environment, 223, 117245. https://doi.org/10.1016/j.atmosenv.2019.117245.
Xu, Y., Zhang, W., Wang, J., Ji, S., Wang, C., & Streets, D. G. (2021). Investigating the spatially heterogeneous impacts of urbanization on city-level industrial SO2 emissions: Evidence from night-time light data in China. Ecological Indicators, 133, 108430. https://doi.org/10.1016/j.ecolind.2021.108430.
Yu, S., Zhang, Q., Hao, J. L., Ma, W., Sun, Y., Wang, X., & Song, Y. (2023). Development of an extended STIRPAT model to assess the driving factors of household carbon dioxide emissions in China. Journal of Environmental Management, 325, 116502. https://doi.org/10.1016/j.jenvman.2022.116502.
Zhang, Y., Song, Z., Huang, S., Zhang, P., Peng, Y., Wu, P., ... & Li, P. (2021). Global health effects of future atmospheric mercury emissions. Nature Communications, 12(1), 3035. https://doi.org/10.1038/s41467-021-23391-7 | ||
آمار تعداد مشاهده مقاله: 360 تعداد دریافت فایل اصل مقاله: 321 |