تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,003 |
تعداد مشاهده مقاله | 125,493,052 |
تعداد دریافت فایل اصل مقاله | 98,753,492 |
بهینهسازی تولید گاما پلیگلوتامیک اسید (γ-PGA)، در باکتری Bacillus velezensis و تاثیر آن بر افزایش شاخصهای رشدی گندم و کنترل Bipolaris sorokiniana عامل بیماری پوسیدگی معمولی ریشه گندم | ||
کنترل بیولوژیک آفات و بیماری های گیاهی | ||
دوره 11، شماره 2، دی 1401، صفحه 69-82 اصل مقاله (1.38 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jbioc.2023.364379.322 | ||
نویسندگان | ||
محسن ساسانی1؛ مسعود احمدزاده* 1؛ حسین بشارتی2؛ امیر میرزادی گوهری3 | ||
1گروه گیاهپزشکی، دانشکدۀ کشاورزی، دانشگاه تهران، کرج، ایران | ||
2بخش بیولوژی موسسه خاک و آب کشور، کرج، ایران. | ||
3گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
کشاورزی مدرن در قرن بیست و یکم باید امنیت غذایی این جمعیت رو به رشد را تامین کند، که به معنای تولید غذا و فیبر بیشتر با نیروی کار کمتر است؛ بنابراین کشاورزی در قرن حاضر نیازمند سرمایهگذاری هوشمندانه مبتنی بر روشهای تولید کارآمدتر و سازگارتر با محیط زیست است. بیماری پوسیدگی معمول ریشه گندم با عامل B. sorokiniana ، از مهمترین بیماریهای گندم است که هر ساله موجب ایجاد خسارتهای اقتصادی میشود. در این پژوهش از مجموع 180 جدایه باکتریایی باسیلوس جداشده از نمونههای جمعآوری شده از مزارع گندم استان همدان، ضایعات قارچهای خوراکی و ضایعات نخل، تعداد 9 جدایه توانستند ترکیب گاما پلی گلوتامیک اسید را با مقادیر مختلف تولید کنند، که از این بین، دو جدایه توانستند γ-PGA را به صورت مستقل از گلوتامیک اسید تولید کنند. جدایه Bacillus velezensis UTB97 با نرخ تولید 40 گرم بر لیتر γ-PGA به عنوان جدایه برتر تولیدکننده انتخاب شد. جدایه UTB97 توانست در شرایط آزمایشگاهی به میزان 65 درصد از رشد قارچ بیمارگر به روش کشت متقابل جلوگیری کند. بررسیهای گلخانهای که بهصورت تیمار بذور گندم انجام شد، نشان داد که تیمار باکتری UTB97 و UTB97 + γ-PGA توانست بیماری پوسیدگی معمولی ریشه گندم را به ترتیب به میزان 59 و 73 درصد در مقایسه با تیمار شاهد کنترل کند، همچنین تیمار UTB97 + γ-PGA توانست موجب افزایش شاخصهای رشدی گندم (طول ساقه و وزن خشک ریشه)، در حضور و عدم حضور قارچ بیمارگر شود. | ||
کلیدواژهها | ||
افزایش رشد؛ کنترل بیماری؛ گاما پلی گلوتامیک اسید | ||
مراجع | ||
Ahmadzadeh, M and Sharifi Tehrani, A. (2021) Plant probiotic bacteria. University of Tehran Press, Allali, K., Goudjal, Y., Zamoum, M., Bouznada, K., Sabaou, N., & Zitouni, A. (2019). Nocardiopsis dassonvillei strain MB22 from the Algerian Sahara promotes wheat seedlings growth and potentially controls the common root rot pathogen Bipolaris sorokiniana. Journal of Plant Pathology, 101, 1115-1125. Al-Sadi, A. M. (2021). Bipolaris sorokiniana-induced black point, common root rot, and spot blotch diseases of wheat: A review. Frontiers in cellular and infection microbiology, 11, 584899. Ashiuchi, M. and H. Misono (2002). "Biochemistry and molecular genetics of poly-γ-glutamate synthesis." Applied microbiology and biotechnology 59: 9-14. Cai, D., He, P., Lu, X., Zhu, C., Zhu, J., Zhan, Y., ... & Chen, S. (2017). A novel approach to improve poly-γ-glutamic acid production by NADPH regeneration in Bacillus licheniformis WX-02. Scientific Reports, 7(1), 43404. Chatterjee, A., Huma, B., Shaw, R., & Kundu, S. (2017). Reconstruction of Oryza sativa indica genome scale metabolic model and its responses to varying RuBisCO activity, light intensity, and enzymatic cost conditions. Frontiers in plant science, 8, 2060. Chen, L., Fei, L., Mohamed, K. S., Liu, L., Wang, Z., Zhong, Y., & Dai, Z. (2018). The effects of ploy (γ-glutamic acid) on spinach productivity and nitrogen use efficiency in North-West China. Plant, Soil and Environment, 64(11), 517-522. Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J. Y., Lee, Y. H., ... & Kim, Y. C. (2008). 2R, 3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Molecular plant-microbe interactions, 21(8), 1067-1075. Clapp, J., Moseley, W. G., Burlingame, B., & Termine, P. (2022). The case for a six-dimensional food security framework. Food Policy, 106, 102164. Fu, Y., Wang, S., Gao, S., Wang, S., Gao, Z., & He, Z. (2022). Effect of a Superabsorbent Polymer (Poly-Gamma-Glutamic Acid) on Water and Salt Transport in Saline Soils under the Influence of Multiple Factors. Polymers, 14(19), 4056. Ghosh, K., Ray, M., Adak, A., Halder, S. K., Das, A., Jana, A., ... & Mondal, K. C. (2015). Role of probiotic Lactobacillus fermentum KKL1 in the preparation of a rice based fermented beverage. Bioresource technology, 188, 161-168. Gondal, M. A., Dastageer, M. A., & Khalil, A. (2009). Synthesis of nano-WO3 and its catalytic activity for enhanced antimicrobial process for water purification using laser induced photo-catalysis. Catalysis Communications, 11(3), 214-219. Guo, J., Zhang, J., Zhang, K., Li, S., & Zhang, Y. (2023). Effect of γ-PGA and γ-PGA SAP on soil microenvironment and the yield of winter wheat. Plos one, 18(7), e0288299. Guo, Y., Gao, P., Li, F., & Duan, T. (2019). Effects of AM fungi and grass endophytes on perennial ryegrass Bipolaris sorokiniana leaf spot disease under limited soil nutrients. European Journal of Plant Pathology, 154, 659-671. Haas, D. and C. Keel (2003). "Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease." Annual review of phytopathology 41(1): 117-153. Halmschlag, B., Putri, S. P., Fukusaki, E., & Blank, L. M. (2020). Poly-γ-glutamic acid production by Bacillus subtilis 168 using glucose as the sole carbon source: a metabolomic analysis. Journal of bioscience and bioengineering, 130(3), 272-282. Harishchandra, H. and P. Perumpuli (2023). "IDENTIFICATION OF ACETIC ACID BACTERIA FROM NATURALLY FERMENTED BANANA VINEGAR." Self-Sustaining Agriculture: Way Forward for Food Security and Safety: 105. Hu, Y., Shao, Y., Wu, C., Yuan, C., Ishimura, G., Liu, W., & Chen, S. (2018). γ-PGA and MTGase improve the formation of ε-(γ-glutamyl) lysine cross-links within hairtail (Trichiurus haumela) surimi protein. Food Chemistry, 242, 330-337. Izano, E. A., Sadovskaya, I., Wang, H., Vinogradov, E., Ragunath, C., Ramasubbu, N., ... & Kaplan, J. B. (2008). Poly-N-acetylglucosamine mediates biofilm formation and detergent resistance in Aggregatibacter actinomycetemcomitans. Microbial pathogenesis, 44(1), 52-60. Kimura, K., Tran, L. S. P., Uchida, I., & Itoh, Y. (2004). Characterization of Bacillus subtilis γ-glutamyltransferase and its involvement in the degradation of capsule poly-γ-glutamate. Microbiology, 150(12), 4115-4123. Kocianova, S., Vuong, C., Yao, Y., Voyich, J. M., Fischer, E. R., DeLeo, F. R., & Otto, M. (2005). Key role of poly-γ-DL-glutamic acid in immune evasion and virulence of Staphylococcus epidermidis. The Journal of clinical investigation, 115(3), 688-694. Layek, J., Das, A., Idapuganti, R. G., Sarkar, D., Ghosh, A., Zodape, S. T., ... & Meena, R. S. (2018). Seaweed extract as organic bio-stimulant improves productivity and quality of rice in eastern Himalayas. Journal of Applied Phycology, 30, 547-558. Liang, J., Shi, W., He, Z., Pang, L., & Zhang, Y. (2019). Effects of poly-γ-glutamic acid on water use efficiency, cotton yield, and fiber quality in the sandy soil of southern Xinjiang, China. Agricultural Water Management, 218, 48-59. Liu, W., Xie, Y., Ma, J., Luo, X., Nie, P., Zuo, Z., ... & Ren, J. (2015). IBS: an illustrator for the presentation and visualization of biological sequences. Bioinformatics, 31(20), 3359-3361. Miljaković, D., Marinković, J., & Balešević-Tubić, S. (2020). The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms, 8(7), 1037. O’Sullivan, C. A., Belt, K., & Thatcher, L. F. (2021). Tackling control of a cosmopolitan phytopathogen: Sclerotinia. Frontiers in Plant Science, 12, 707509. Paul, S. K., Mahmud, N. U., Gupta, D. R., Surovy, M. Z., Rahman, M., & Islam, M. T. (2021). Characterization of Sclerotium rolfsii causing root rot of sugar beet in Bangladesh. Sugar Tech, 23, 1199-1205. Peng, Y. P., Chang, Y. C., Chen, K. F., & Wang, C. H. (2020). A field pilot-scale study on heavy metal-contaminated soil washing by using an environmentally friendly agent—poly-γ-glutamic acid (γ-PGA). Environmental Science and Pollution Research, 27, 34760-34769. Pötter, M., Oppermann-Sanio, F. B., & Steinbüchel, A. (2001). Cultivation of bacteria producing polyamino acids with liquid manure as carbon and nitrogen source. Applied and environmental microbiology, 67(2), 617-622. Rehm, B. H. (2010). "Bacterial polymers: biosynthesis, modifications and applications." Nature Reviews Microbiology 8(8): 578-592. Shih, I. L., Van, Y. T., & Shen, M. H. (2004). Biomedical applications of chemically and microbiologically synthesized poly (glutamic acid) and poly (lysine). Mini reviews in medicinal chemistry, 4(2), 179-188. Thammasittirong, S. N. R. (2017). The potential of Bacillus subtilis BAS114 for in vitro biocontrol of Fusarium oxysporum. Advances in Environmental Biology, 11(1), 46-51. Villa-Rodriguez, E., Parra-Cota, F., Castro-Longoria, E., López-Cervantes, J., & de los Santos-Villalobos, S. (2019). Bacillus subtilis TE3: a promising biological control agent against Bipolaris sorokiniana, the causal agent of spot blotch in wheat (Triticum turgidum L. subsp. durum). Biological control, 132, 135-143. Villa-Rodriguez, E., Lugo-Enríquez, C., Ferguson, S., Parra-Cota, F. I., Cira-Chávez, L. A., & de los Santos-Villalobos, S. (2022). Trichoderma harzianum sensu lato TSM39: A wheat microbiome fungus that mitigates spot blotch disease of wheat (Triticum turgidum L. subsp. durum) caused by Bipolaris sorokiniana. Biological Control, 175, 105055. Wang, L., Mao, J., Zhao, H., Li, M., Wei, Q., Zhou, Y., & Shao, H. (2016). Comparison of characterization and microbial communities in rice straw-and wheat straw-based compost for Agaricus bisporus production. Journal of Industrial Microbiology and Biotechnology, 43(9), 1249-1260. Yi, Y., Shan, Y., Liu, S., Yang, Y., Liu, Y., Yin, Y., ... & Li, R. (2021). Antagonistic strain Bacillus amyloliquefaciens XZ34-1 for controlling Bipolaris sorokiniana and promoting growth in wheat. Pathogens, 10(11), 1526. Yin, A., Jia, Y., Qiu, T., Gao, M., Cheng, S., Wang, X., & Sun, Y. (2018). Poly-γ-glutamic acid improves the drought resistance of maize seedlings by adjusting the soil moisture and microbial community structure. Applied Soil Ecology, 129, 128-135. Zabed, H. M., Akter, S., Yun, J., Zhang, G., Awad, F. N., Qi, X., & Sahu, J. N. (2019). Recent advances in biological pretreatment of microalgae and lignocellulosic biomass for biofuel production. Renewable and Sustainable Energy Reviews, 105, 105-128. Zhang, L., Yang, X., Gao, D., Wang, L., Li, J., Wei, Z., & Shi, Y. (2017). Effects of poly-γ-glutamic acid (γ-PGA) on plant growth and its distribution in a controlled plant-soil system. Scientific reports, 7(1), 6090. Zhang, P., Guo, G., Wu, Q., Chen, Y., Xie, J., Lu, P., ... & Liu, Z. (2020). Identification and fine mapping of spot blotch (Bipolaris sorokiniana) resistance gene Sb4 in wheat. Theoretical and Applied Genetics, 133, 2451-2459. Zhang, X., Wu, Y., & Gu, B. (2015). Urban rivers as hotspots of regional nitrogen pollution. Environmental Pollution, 205, 139-144. | ||
آمار تعداد مشاهده مقاله: 344 تعداد دریافت فایل اصل مقاله: 424 |