- Alasti, O., Zeinali, E., Soltani, A., & Torabi, B. (2020). Estimation of yield gap and the potential of rainfed barley production increase in Iran. Journal of Crop Production, 13(3), 41-60.
- Alvarez, R. (2009). Predicting average regional yield and production of wheat in the Argentine Pampas by an artificial neural network approach. European Journal of Agronomy, 30(2), 70-77.
- Balaghi, R., Tychon, B., Eerens, H., & Jlibene, M. (2008). Empirical regression models using NDVI, rainfall and temperature data for the early prediction of wheat grain yields in Morocco. International Journal of Applied Earth Observation and Geoinformation, 10(4), 438-452.
- Bocca, F. F., & Rodrigues, L. H. A. (2016). The effect of tuning, feature engineering, and feature selection in data mining applied to rainfed sugarcane yield modelling. Computers and Electronics in Agriculture, 128, 67-76.
- Bouras, E. H., Jarlan, L., Er-Raki, S., Albergel, C., Richard, B., Balaghi, R., & Khabba, S. (2020). Linkages between rainfed cereal production and agricultural drought through remote sensing indices and a land data assimilation system: A case study in Morocco. Remote Sensing, 12(24), 4018.
- Bouras, E. H., Jarlan, L., Er-Raki, S., Balaghi, R., Amazirh, A., Richard, B., & Khabba, S. (2021). Cereal yield forecasting with satellite drought-based indices, weather data and regional climate indices using machine learning in Morocco. Remote Sensing, 13(16), 3101.
- Cai, X., & Sharma, B. R. (2010). Integrating remote sensing, census and weather data for an assessment of rice yield, water consumption and water productivity in the Indo-Gangetic river basin. Agricultural Water Management, 97(2), 309-316.
- Cao, J., Zhang, Z., Tao, F., Zhang, L., Luo, Y., Han, J., & Li, Z. (2020). Identifying the contributions of multi-source data for winter wheat yield prediction in China. Remote Sensing, 12(5), 750.
- Cao, J., Wu, E., Wu, S., Fan, R., Xu, L., Ning, K., Li, Y., Lu, R., Xu, X., & Zhang, J. (2022). Spatiotemporal dynamics of ecological condition in Qinghai-Tibet Plateau based on Remotely Sensed Ecological Index. Remote Sensing, 14(17), 4234.
- Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, USA, 785.
- Chen, Z., Wang, W., & Fu, J. (2020). Vegetation response to precipitation anomalies under different climatic and biogeographical conditions in China. Scientific Reports, 10(1), 1-16.
- Du, L., Tian, Q., Yu, T., Meng, Q., Jancso, T., Udvardy, P., & Huang, Y. (2013). A comprehensive drought monitoring method integrating MODIS and TRMM data. International Journal of Applied Earth Observation and Geoinformation, 23, 245-253.
- Fan, J., Wang, X., Wu, L., Zhou, H., Zhang, F., Yu, X., Lu, X., & Xiang, Y. (2018). Comparison of Support Vector Machine and Extreme Gradient Boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: A case study in China. Energy Conversion and Management, 164, 102-111.
- Filippi, P., Jones, E. J., Wimalathunge, N. S., Somarathna, P. D., Pozza, L. E., Ugbaje, S. U., Jephcott, T. G., Paterson, S. E., Whelan, B. M., & Bishop, T. F. (2019). An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning. Precision Agriculture, 20, 1015-1029.
- Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18-27.
- Guo, W. W., & Xue, H. (2012). An incorporative statistic and neural approach for crop yield modelling and forecasting. Neural Computing and Applications, 21, 109-117.
- Han, J., Zhang, Z., Cao, J., Luo, Y., Zhang, L., Li, Z., & Zhang, J. (2020). Prediction of winter wheat yield based on multi-source data and machine learning in China. Remote Sensing, 12(2), 236.
- Huang, X., Liu, J., Zhu, W., Atzberger, C. & Liu, Q. (2019). The optimal threshold and vegetation index time series for retrieving crop phenology based on a modified dynamic threshold method. Remote Sensing, 11(23), 2725.
- Jarray, N., Abbes, A. B., & Farah, I. R. (2022). A Machine learning framework for cereal yield forecasting using heterogeneous data. In International Conference on Intelligent Systems Design and Applications. Cham: Springer Nature Switzerland. 21-30.
- Jiang, D., Yang, X., Clinton, N., & Wang, N. (2004). An artificial neural network model for estimating crop yields using remotely sensed information. International Journal of Remote Sensing, 25(9), 1723-1732.
- Johnson, M. D., Hsieh, W. W., Cannon, A. J., Davidson, A., & Bédard, F. (2016). Crop yield forecasting on the Canadian Prairies by remotely sensed vegetation indices and machine learning methods. Agricultural and Forest Meteorology, 218, 74-84.
- Kang, Y., Ozdogan, M., Zhu, X., Ye, Z., Hain, C., & Anderson, M. (2020). Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest. Environmental Research Letters, 15(6), 064005.
- Kim, N., & Lee, Y.-W. (2016). Machine learning approaches to corn yield estimation using satellite images and climate data: a case of Iowa State. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 34(4), 383-390.
- Li, A., Liang, S., Wang, A., & Qin, J. (2007). Estimating crop yield from multi-temporal satellite data using multivariate regression and neural network techniques. Photogrammetric Engineering and Remote Sensing, 73(10), 1149-1157.
- Liakos, K. G., Busato, P., Moshou, D., Pearson, S., & Bochtis, D. (2018). Machine learning in agriculture: A review. Sensors, 18(8), 2674.
- Liu, W., & Kogan, F. (2002). Monitoring Brazilian soybean production using NOAA/AVHRR based vegetation condition indices. International Journal of Remote Sensing, 23(6), 1161-1179.
- MacDonald, R. B., & Hall, F. G. (1980). Global crop forecasting. Science, 208(4445), 670-679.
- Majnooni Heris, A., Sadraddini, A. A., Nazemi, A. H., & Delir Hassannia, R. (2017). Investigation of advection occurrence in the spring and fall crops growing season in Karkaj region, Tabriz. Water and Soil Science, 27(4), 65-77.
- Palanivel, K., & Surianarayanan, C. (2019). An approach for prediction of crop yield using machine learning and big data techniques. International Journal of Computer Engineering and Technology, 10(3), 110-118.
- Parviz, L. (2018). Assessing accuracy of barley yield forecasting with integration of climate variables and support vector regression. Annales Universitatis Mariae Curie-Sklodowska, sectio C–Biologia, 73, 1.
- Prasad, A. K., Chai, L., Singh, R. P., & Kafatos, M. (2006). Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied Earth Observation and Geoinformation, 8(1), 26-33.
- Rahman, M. M., & Robson, A. (2020). Integrating landsat-8 and sentinel-2 time series data for yield prediction of sugarcane crops at the block level. Remote Sensing, 12(8), 1313.
- Rasouli, A., & Erfanian, M. (2014). Comparative evaluation of TRMM estimated rainfall and recorded rainfall of ground stations in Lake Urmia basin. Geographical Space Quarterly, 54, 195-217. (In Persian).
- Rezapour, S., Jooyandeh, E., Ramezanzade, M., Mostafaeipour, A., Jahangiri, M., Issakhov, A., Chowdhury, S., & Techato, K. (2021). Forecasting rainfed agricultural production in arid and semi-arid lands using learning machine methods: A case study. Sustainability, 13(9), 4607.
- Salazar, L., Kogan, F., & Roytman, L. (2007). Use of remote sensing data for estimation of winter wheat yield in the United States. International Journal of Remote Sensing, 28(17), 3795-3811.
- Sharifi, A. (2021). Yield prediction with machine learning algorithms and satellite images. Journal of the Science of Food and Agriculture, 101(3), 891-896.
- Shojaeeian, A., Mokhtari Chelche, S., Keshtkar, L., & Soleymani Rad, E. (2015). Comparing the performance of parametric and nonparametric methods in land cover classification using Landsat-8 Satellite images (Case study: A part of Dezful city). Scientific-Research Quarterly of Geographical Data, 24(93), 53-64. (In Persian).
- Sobrino, J., Coll, C., & Caselles, V. (1991). Atmospheric correction for land surface temperature using NOAA-11 AVHRR channels 4 and 5. Remote sensing of environment, 38(1), 19-34.
- Tabari, H., Talaee, P. H., Nadoushani, S. M., Willems, P., & Marchetto, A. (2014). A survey of temperature and precipitation based aridity indices in Iran. Quaternary International, 345, 158-166.
- Thenkabail, P. S., & Gamage, M. S. D. N. (2004). The use of remote sensing data for drought assessment and monitoring in Southwest Asia (Vol. 85). IWMI.
- Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127-150.
- Van Klompenburg, T., Kassahun, A., & Catal, C. (2020). Crop yield prediction using machine learning: A systematic literature review. Computers and Electronics in Agriculture, 177, 105709.
- Zahirnia, A. R., & Matinfar, H. R. (2016). Evaluate the yield of irrigated wheat fields on the basis of data obtained from Landsat 8 in the southwestern province of Khuzestan. In First National Conference on Remote Sensing and GIS in the earth sciences, Shiraz University. (In Persian).
- Zeinvand Lorestani, E., Kamkar, B., & Razavi, S. E. (2016). Study on the effect of agricultural management factors on fungal diseases diversity indices and wheat yield in Gorgan using decision tree analysis CART. Cereal Research, 6(4), 489-505. (In Persian).
|