تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,502 |
تعداد مشاهده مقاله | 124,117,678 |
تعداد دریافت فایل اصل مقاله | 97,223,336 |
مدلسازی انرژی تولید هلو با بهرهگیری از فناوری یادگیری ماشین در شهرستان نظرآباد، استان البرز | ||
مهندسی بیوسیستم ایران | ||
دوره 54، شماره 1، فروردین 1402، صفحه 53-71 اصل مقاله (1.85 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijbse.2023.360300.665512 | ||
نویسندگان | ||
سیدامید داودالموسوی؛ شاهین رفیعی* ؛ علی جعفری | ||
گروه مهندسی مکانیک ماشینهای کشاورزی، دانشکده فنی و مهندسی کشاورزی، دانشکده کشاورزی و منابع طبیعی، دانشگاه تهران، کرج، ایران | ||
چکیده | ||
امروزه تأمین امنیت غذایی برای جمعیت روبهرشد جهان با حفظ منابع کره زمین و حداقل اثرات زیستمحیطی به یکی از چالشهای اساسی و مهم در کشاورزی پایدار تبدیلشده است و استفاده بهینه از منابع یکی از الزامات اصلی کشاورزی پایدار است. در این مطالعه به بررسی الگوی مصرف انرژی در تولید هلو، تجزیهوتحلیل و مدلسازی انرژی و عملکرد تولید هلو در شهرستان نظرآباد پرداخته شد. دادهها از طریق مصاحبه با باغداران و پر کردن پرسشنامههای تخصصی جمعآوری شد. نتایج نشان داد که کل انرژی مصرفی و تولیدی به ترتیب برابر 83/72716 و 89/5234 مگاژول در هکتار بود. برق با سهم 59 درصدی از کل انرژیهای ورودی پرمصرفترین نهاده بود. شاخصهای کارایی انرژی، بهرهوری انرژی، شدت انرژی و انرژی خالص به ترتیب 07/0، kg/MJ 03/0،MJ/kg 39/26 و MJ67481- به دست آمد. مدلسازی با سه روش رگرسیون گرادیان تقویت شده، رگرسیون درختان تصمیم و رگرسیون جنگل تصادفی انجام شد و RRMSE به ترتیب 003/0- ،0090/0- و 0091/0- و R2به ترتیب 98/0، 95/0 و 90/0 محاسبه شد نتایج نشان داد که روش گرادیان تقویت شده قادر است بادقت بالاتری مقادیر شاخصهای بهرهوری انرژی تولید هلو را پیشبینی کند. نتایج نشان داد که بهرهوری انرژی و تولیدات بهوسیله نهادههای آب آبیاری، برق، کودهای شیمیایی و حیوانی، نیروی کارگری، سموم شیمیایی، سوخت دیزل و ماشینها و روش یادگیری ماشین بادقت بالایی قابلپیشبینی میباشد. تحلیل حساسیت با SHAP انجام شد و نتایج نشان داد که تأثیرگذارترین نهاده در پیشبینی انرژی، کود شیمیایی ازته بود. | ||
کلیدواژهها | ||
تحلیل حساسیت با SHAP؛ شهرستان نظرآباد؛ کارایی انرژی؛ هلو؛ یادگیری ماشین | ||
مراجع | ||
Aghighi, H., Azadbakht, M., Ashourloo, D., Shahrabi, H. S., & Radiom, S. (2018). Machine learning regression techniques for the silage maize yield prediction using time-series images of Landsat 8 OLI. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 11(12), 4563-4577. Amirahmadi, E., Moudrý, J., Konvalina, P., Hörtenhuber, S. J., Ghorbani, M., Neugschwandtner, R. W. & Kopecký, M. (2022). Environmental Life Cycle Assessment in Organic and Conventional Rice Farming Systems: Using a Cradle to Farm Gate Approach. Sustainability, 14(23), 15870. Amiri, Suleiman, Sharifi, Goljanian, Motsharai, & Zainab Al-Sadat. (2017). Investigating the pathogenicity of the fungus Metarhizium anisopliae on the green peach tree Myzus persicae. Applied research in herbal medicine, 6(1), 77-86.(In Persian) Department of Jihad-e-Agriculture ofIran .(2022). Annual agricultural statistics. (in persian) , From http://www.maj.ir/. Statistical Center of Iran. (2022). Provincial geographic and weather data, (in persian) , From http://www.amar.org.ir. Asgharipour M.R., Mousavinik S.M., Enayat F.F. (2016) Evaluation of energy input & greenhouse gases emissions from alfalfa production in the Sistan region, Iran. EnergyReports 2:135-140. Canakci, M., Topakci, M., Akinci, I. & Ozmerzi, A. (2005). Energy use pattern of some field crops & vegetable production: Case study for Antalya Region, Turkey. Energy Conversion & Management, 46(4), 655-666. Dewi, C., & Chen, R. C. (2020). Decision making based on IoT data collection for precision agriculture. Intelligent Information & Database Systems: Recent Developments 11, 31-42. Elhami, B., Raini, M. G. N., Taki, M., Marzban, A., & Heidarisoltanabadi, M. (2021). Analysis & comparison of energy-economic-environmental cycle in two cultivation methods (seeding & transplanting) for onion production (case study: central parts of Iran). Renewable Energy, 178, 875-890. Erdal, G., Esengün, K., Erdal, H. & Gündüz, O. (2007). Energy use & economical analysis of sugar beet production in Tokat province of Turkey. Energy, 32(1), 35-41. Ghaderpour O. & Rafiee SH. (2016). Analysis, modeling of energy & yield of dryl& chickpea in the Bukan township. Iran Biosystem Engeering(In Persian). Ghasemi Varnamkhasadi, Mehdi, Hashemi Garam Dareh, Seyed Mahmoud, and Hashemi Garam Dareh, Seyed Ali. (2014). Investigating energy indicators and optimizing its use in peach production, a case study: Saman region in Chaharmahal and Bakhtiari province. Agricultural Machinery, 5(1), 206-216. SID https://sid.ir/paper/201455/fa (In Persian). Ghatrehsamani, S., Ebrahimi, R., Kazi, S. N., Badry, A. B., & Sadeghinezhad, E. (2016). Optimization model of peach production relevant to input energies–Yield function in Chaharmahal va Bakhtiari Province, Iran. Energy, 99, 315-321. Goldstein, A., Fink, L., Meitin, A., Bohadana, S., Lutenberg, O., & Ravid, G. (2018). Applying machine learning on sensor data for irrigation recommendations: revealing the agronomist’s tacit knowledge. Precision agriculture, 19, 421-444. Haji Faraji, Mahdekht and Aghajani, Abdolreza, 2017, An introduction to the recognition of peach fruit, the third national conference of knowledge and technology of agricultural sciences, natural resources and environment of Iran, Tehran. Hemalatha, N., Brendon, V. F., Shihab, M. M., & Rajesh, M. K. (2015). Machine Learning Algorithm for Predicting Ethylene Responsive Transcription Factor in Rice Using an Ensemble Classifier. Procedia Computer Science, 49, 128-135. Kaab, A., Sharifi, M., Mobli, H., Nabavi-Pelesaraei, A., & Chau, K. W. (2019). Combined life cycle assessment & artificial intelligence for prediction of output energy & environmental impacts of sugarcane production. Science of the Total Environment, 664, 1005-1019. Kamilaris, A., & Prenafeta-Boldú, F. X. (2018). Deep learning in agriculture: A survey. Computers & electronics in agriculture, 147, 70-90. Kaul, M., Hill, R. L., & Walthall, C. (2005). Artificial neural networks for corn & soybean yield prediction. Agricultural Systems, 85(1), 1-18 Khanali, M., Akram, A., Behzadi, J., Mostashari-Rad, F., Saber, Z., Chau, K. W., & Nabavi-Pelesaraei, A. (2021). Multi-objective optimization of energy use & environmental emissions for walnut production using imperialist competitive algorithm. Applied Energy, 284, 116342. Khoobbakht, G., & Akram, A. (2020). Investigating the Pattern of Energy Consumption, Sensitivity Analysis and Economic Performance of Plum Production in Khansar Township, Isfahan, Iran. Iranian Journal of Biosystems Engineering, 51(2), 263-272. Khoshnevisan, B., Rafiee, S., Omid, M., & Mousazadeh, H. (2013). Reduction of CO2 emission by improving energy use efficiency of greenhouse cucumber production using DEA approach. Energy, 55, 676-682. Mohammadi, A. & Omid, M. (2010). Economical analysis & relation between energy inputs & yield of greenhouse cucumber production in Iran. Applied Energy, 87(1), 191-196. Mohammadzadeh, A., Damghani, A.M., Vafabakhsh, J., & Deihimfard, R. 2017. Assessing energy efficiencies, economy, & global warming potential (GWP) effects of major crop production systems in Iran: a case study in East Azerbaijan province. Environmental Science & Pollution Research 24: 16971-16 Morellos, A., Pantazi, X. E., Moshou, D., Alex&ridis, T., Whetton, R., Tziotzios, G., ... & Mouazen, A. M. (2016). Machine learning based prediction of soil total nitrogen, organic carbon & moisture content by using VIS-NIR spectroscopy. Biosystems Engineering, 152, 104-116. Mostafaeipour, A., Fakhrzad, M. B., Gharaat, S., Jahangiri, M., Dhanraj, J. A., B&, S.& Mosavi, A. (2020). Machine learning for prediction of energy in wheat production. Agriculture, 10(11), 517 Nabavi-Pelesaraei, A., Abdi, R., Rafiee, S., & Mobtaker, H. G. (2014). Optimization of energy required & greenhouse gas emissions analysis for orange producers using data envelopment analysis approach. Journal of Cleaner Production, 65, 311-317. Najafabadi, M. M., Sabouni, M., Azadi, H., & Taki, M. (2022). Rice production energy efficiency evaluation in north of Iran; application of Robust Data Envelopment Analysis. Cleaner Engineering and Technology, 6, 100356. Nikkhah, A., Royan, M., Khojastehpour, M., & Bacenetti, J. (2017). Environmental impacts modeling of Iranian peach production. Renewable & Sustainable Energy Reviews, 75, 677-682. Nie, P., Roccotelli, M., Fanti, M. P., Ming, Z., & Li, Z. (2021). Prediction of home energy consumption based on gradient boosting regression tree. Energy Reports, 7, 1246-1255. Pahlavan, R., Omid, M. & Akram, A. (2012). Energy input–output analysis & application of artificial neural networks for predicting greenhouse basil production. Energy, 37(1), 171-176. Papageorgiou, E. I., Aggelopoulou, K. D., Gemtos, T. A., & Nanos, G. D. (2013). Yield prediction in apples using Fuzzy Cognitive Map learning approach. Computers & electronics in agriculture, 91, 19-29. Pourhasan, Shah Hosseini, Sidi. (2021). Presenting a classification method based on deep learning in differentiating types of agricultural products using time series satellite images. Scientific Journal of Mapping Sciences & Techniques, 11(1), 129-142. (In Persian) Rafiee, S., Avval, S. H. M., & Mohammadi, A. (2010). Modeling & sensitivity analysis of energy inputs for apple production in Iran. Energy, 35(8), 3301-3306. Rezapour, S., Jooy&eh, E., Ramezanzade, M., Mostafaeipour, A., Jahangiri, M., Issakhov, A., ... & Techato, K. (2021). Forecasting rainfed agricultural production in arid & semi-arid l&s using learning machine methods: A case study. Sustainability, 13(9), 4607. Royan, M., Khojastehpour, M., Emadi, B., & Mobtaker, H. G. (2012). Investigation of energy inputs for peach production using sensitivity analysis in Iran. Energy Conversion & Management, 64, 441-446. Sadr, S., & Eslami, M. (2021). Determination of effective weather variables on pistachio yield using C&R decision tree algorithm. Journal of Agricultural Meteorology, 9(1), 53-62. Singh, S., & Mittal, J. P. (1992). Energy in production agriculture. Mittal Publications. Slack, D., Hilgard, S., Jia, E., Singh, S., & Lakkaraju, H. (2020,). Fooling lime & shap: Adversarial attacks on post hoc explanation methods. In Proceedings of the AAAI/ACM Conference on AI, Ethics, & Society (pp. 180-186). Su, Y. X., Xu, H., & Yan, L. J. (2017). Support vector machine-based open crop model (SBOCM): Case of rice production in China. Saudi journal of biological sciences, 24(3), 537-547. Sun, S., Bao, Y., Lu, M., Liu, W., Xie, X., Wang, C., & Liu, W. (2016). A comparison of models for the short-term prediction of rice stripe virus disease & its association with biological & meteorological factors. Acta Ecologica Sinica, 36(3), 166-171. Shahbeik, H., Rafiee, S., Shafizadeh, A., Jeddi, D., Jafary, T., Lam, S. S., ... & Aghbashlo, M. (2022). Characterizing sludge pyrolysis by machine learning: towards sustainable bioenergy production from wastes. Renewable Energy, 199, 1078-1092. Tabatabaie, S.M.H., Rafiee, S. & Keyhani, A. (2012). Energy consumption flow & econometric models of two plum cultivars productions in Tehran province of Iran. Energy, 44(1), 211-216. Vafabakhsh, J., & Mohammadzadeh, A. (2019). Energy flow & GHG emissions in major field & horticultural crop production systems (case study: Sharif Abad plain). Journal of Agroecology, 11(2), 365 Wei, Yixuan, Xingxing Zhang, Yong Shi, Liang Xia, Song Pan, Jinshun Wu, Mengjie Han, & Xiaoyun Zhao. 2018. “A Review of Data-Driven Approaches for Prediction & Classification of Building Energy Consumption.” Renewable & Sustainable Energy Reviews 82 (September): 1027–47 Yang, Y., Shahbeik, H., Shafizadeh, A., Masoudnia, N., Rafiee, S., Zhang, Y., ... & Aghbashlo, M. (2022). Biomass microwave pyrolysis characterization by machine learning for sustainable rural biorefineries. Renewable Energy, 201, 70-86. Yildizhan, H., Taki, M., Özilgen, M., & Gorjian, S. (2021). Renewable energy utilization in apple production process: A thermodynamic approach. Sustainable EnergyTechnologies& Assessments, 43, 100956. Zhang, L., Traore, S., Ge, J., Li, Y., Wang, S., Zhu, G., ... & Fipps, G. (2019). Using boosted tree regression & artificial neural networks to forecast upl& rice yield under climate change in Sahel. Computers & Electronics in Agriculture, 166, 105031. Payandeh, Zahra, Khairalipour, Kamran, and Karimi, Mahmoud. (2015). Investigating the efficiency of broiler breeding units using the data envelopment analysis method, case study: Isfahan province. Biosystem Engineering of Iran (Agricultural Sciences of Iran), 47(3), 577-585(In Persian). Molai, Komil, Kihani, Alireza, Karimi, Mahmoud, Khairalipour, Kamran, and Ghasemi Varnamkhashadi, Mehdi. (2009). Energy ratio of dry wheat - case study: Euclid city (Persia). Biosystem Engineering of Iran (Agricultural Sciences of Iran), 39(1), 13-19. Dekamin, M., Kheiralipour, K., & Afshar, R. K. (2022). Energy, economic, and environmental assessment of coriander seed production using material flow cost accounting and life cycle assessment. Environmental Science and Pollution Research, 29(55), 83469-83482. Kheiralipour, K., & Sheikhi, N. (2021). Material and energy flow in different bread baking types. Environment, development and sustainability, 23, 10512-10527. Ramedani, Z., Alimohammadian, L., Kheialipour, K., Delpisheh, P., & Abbasi, Z. (2019). Comparing energy state and environmental impacts in ostrich and chicken production systems. Environmental science and pollution research, 26, 28284-28293. | ||
آمار تعداد مشاهده مقاله: 268 تعداد دریافت فایل اصل مقاله: 296 |