- اصلانی، فرشته؛ امینی حسینی، کامبد؛ و فلاحی، علیرضا (1397). چارچوب تابآوری کالبدی و اجتماعی محله در برابر زلزله (مطالعۀ موردی: محلۀ کشاورز واقع در منطقۀ 6 تهران. مدیریت مخاطرات محیطی، 5(4). 417-433.
- شورای عالی شهرسازی و معماری (1398). مصوبۀ شورای عالی شهرسازی و معماری پیرامون ضوابط عام بلندمرتبهسازی. تهران: شورای عالی شهرسازی و معماری.
- Aiello, C., Caterino, N., Maddaloni, G., Bonati, A., Franco, A., & Occhiuzzi, A. (2018). Experimental and numerical investigation of cyclic response of a glass curtain wall for seismic performance assessment. Construction and Building Materials, 187, 596–609. https://doi.org/10.1016/j.conbuildmat.2018.07.237.
- Arksey, H., & O'Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616.
- Attaria, K.A., Zargaran, M., Khalili Jahromi, K., Bayat, M.R., & Jahanmohammadi, A. (2020). Seismic evaluation of cladded exterior walls considering the effects of façade installation details and out-of-plane behavior of walls. Structures, 24, 317–334. https://doi.org/10.1016/j.istruc.2020.01.040.
- Baird, A., Palermo, A., & Pampanin, S. (2013, April). Controlling seismic response using passive energy dissipating cladding connections. Paper presented at the 2013 NZSEE Conference, wellington, New Zealand. https://api.semanticscholar.org/CorpusID:55959310?utm_source=wikipedia.
- Baniotopoulos, C. C., Nikolaidis, T. N., & Moutsanidis, G. (2016). Optimal structural design of glass curtain-wall systems. Proceedings of the Institution of Civil Engineers: Structures and Buildings, 169(6), 450–457. https://doi.org/10.1680/jstbu.13.00088.
- Behr, R. A. (1998). Seismic performance of architectural glass in mid-rise curtain wall. Journal of Architectural Engineering, 4(3), 94–98. , https://ascelibrary.org/doi/abs/10.1061/(ASCE)1076-0431(1998)4:3(94).
- Behr, R. A., Belarbi, A., & Culp, J. H. (1995). Dynamic racking tests of curtain wall glass elements with in‐plane and out‐of‐plane motions. Earthquake Engineering & Structural Dynamics, 24(1), 1–14. https://onlinelibrary.wiley.com/doi/10.1002/eqe.4290240102.
- Bhatta, J., Dhakal, R. P., Sullivan, T. J., & Lanyon, M. (2022). Low-damage rocking precast concrete cladding panels: Design approach and experimental validation. Journal of Earthquake Engineering, 26(9), 4387–4420. https://doi.org/10.1080/13632469.2020.1830201.
- Bianchi, S., Ciurlanti, J., & Pampanin, S. (2021). Comparison of traditional vs low-damage structural and non-structural building systems through a cost/performance-based evaluation. Earthquake Spectra, 37(1), 366–385. https://doi.org/10.1177/8755293020952445.
- Bianchi, S., Ciurlanti, J., & Pampanin, S. (2019, September). Seismic vulnerability of non-structural components: from traditional solutions to innovative low-damage systems. Paper presented at the SECED 2019 Conference, London, England. http://seced.org.uk/images/newsletters/4.5.pdf.
- Bianchi, S., & Pampanin, S. (2022). Fragility Functions for Architectural Nonstructural Components. Journal of structural engineering, 148(10), 3122005. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003352.
- Caterino, N., Del Zoppo, M., Maddaloni, G., Bonati, A., Cavanna, G., & Occhiuzzi, A. (2017). Seismic assessment and finite element modelling of glazed curtain walls. Structural Engineering and Mechanics, 61(1), 77–90. https://doi.org/10.12989/sem.2017.61.1.077.
- Desai, N. (2011). A study of the behavior of veneer wall systems in medium rise buildings under seismic loads. (Doctoral Dissertation, University of Louisville, Kentucky). Retrieved from https://ir.library.louisville.edu/etd/337/.
- Gorenc, B., & Beg, D. (2016). Curtain wall façade system under lateral actions with regard to limit states. Steel Construction, 9(1), 37–45. https://doi.org/10.1002/stco.201400001.
- Haese, A. (2019). Revolving entrance doors: Machines or structural elements?. Glass Structures and Engineering, 4(1), 17–27. https://doi.org/10.1007/s40940-018-0081-x.
- Huang, S., Samali, B., & Li, J. (2021). Numerical and experimental investigations of a thermal break composite façade mullion under four-point bending. Journal of Building Engineering, 34, 101590. https://doi.org/10.1016/j.jobe.2020.101590.
- Lee, H., Oh, M., Seo, J., & Kim, W. (2021). Seismic and energy performance evaluation of large-scale curtain walls subjected to displacement control fasteners. Applied Sciences (Switzerland), 11(15), 6725. https://doi.org/10.3390/app11156725.
- Martins, A. P. G. (2018). Seismic behaviour of masonry veneer walls. (Doctoral dissertation, Universidade do Minho, Portugal). Retrieved from https://repositorium.sdum.uminho.pt/bitstream/1822/59015/1/PhDthesis_Andreia_Martins.pdf.
- Memari, A. M., Behr, R. A., & Kremer, P. A. (2004). Dynamic racking crescendo tests on architectural glass fitted with anchored pet film. Journal of Architectural Engineering, 10(1), 5–14. https://doi.org/10.1061/(ASCE)1076-0431(2004)10:1(5).
- Memari, A. M., Kremer, P. A., & Behr, R. A. (2006). Architectural glass panels with rounded corners to mitigate earthquake damage. Earthquake Spectra, 22(1), 129–150. https://journals.sagepub.com/doi/abs/10.1193/1.2164875?journalCode=eqsa.
- Miranda, E., Kazantzi, A. K., & Vamvatsikos, D. (2018, June). New approach to the design of acceleration-sensitive non-structural elements in buildings. Paper presented at the 16th European conference on earthquake engineering, Thessaloniki, Greece. https://www.researchgate.net/publication/325988163_New_approach_to_the_design_of_acceleration-sensitive_non-structural_elements_in_buildings.
- Misir, I. S., Ozcelik, O., Girgin, S. C., & Yucel, U. (2016). The behavior of infill walls in RC frames under combined bidirectional loading. Journal of Earthquake Engineering, 20(4), 559–586. https://doi.org/10.1080/13632469.2015.1104748.
- O'Brien Jr, W. C., Memari, A. M., Kremer, P. A., & Behr, R. A. (2012). Fragility curves for architectural glass in stick-built glazing systems. Earthquake Spectra, 28(2), 639–665. https://journals.sagepub.com/doi/10.1193/1.4000011.
- Okail, H. O., Shing, P. B., Klingner, R. E., McGinley, W. M., & McLean, D. I. (2010, July). Shaking-table testing of single-story clay masonry veneer wood-frame building. Paper presented at the 9th US national and 10th Canadian conference on earthquake engineering: reaching beyond borders, Toronto, Ontario. https://www.caee.ca/10CCEEpdf/2010EQConf-000084.pdf.
- Okail, H. O., Shing, P. B., Klingner, R. E., & McGinley, W. M. (2008, October). Seismic performance of clay masonry veneer. Paper presented at the 14th World conference on earthquake engineering, Beijing, China. https://www.researchgate.net/profile/Pui-Shum-Shing-2/publication/228676436_SEISMIC_PERFORMANCE_OF_CLAY_MASONRY_VENEER/links/54a17b250cf257a6360371b1/SEISMIC-PERFORMANCE-OF-CLAY-MASONRY-VENEER.pdf.
- Pantoli, E. (2016). Seismic Behavior of Architectural Precast Concrete Cladding Panels and Connections (Doctoral Dissertation, University of California, San Diego). Retrieved from https://escholarship.org/uc/item/8x06n6mc.
- Pao, K. (2002). Performance-based seismic design of buildings considering architectural elements (Doctoral Dissertation, Illinois Institute of Technology, Chicago) Retrieved from https://www.proquest.com/openview/1af7a2805d0ff3e6430671f10d38307b/1?pqorigsite=gscholar&cbl=18750&diss=y.
- Pereira, M. F. P., Pereira, M. F., Ferreira, J. E., & Lourenço, P. B. (2011, June). Behavior of masonry infill panels in RC frames subjected to in plane and out of plane loads. Paper presented at the 7th International Conference AMCM 2011, Kraków, Poland. https://hdl.handle.net/1822/14880.
- Reneckis, D., & LaFave, J. M. (2010, July). Seismic fragility assessment of residential anchored brick veneer walls. Paper presented at the 9th US National and 10th Canadian Conference on Earthquake Engineering 2010, Including Papers from the 4th International Tsunami Symposium, Toronto, Ontario. https://www.caee.ca/10CCEEpdf/2010EQConf-001144.pdf.
- Reyes, J. C., Correal, J. F., Gonzalez-Mancera, A., Echeverry, J. S., Gómez, I. D., Sandoval, J. D., & Ángel, C. C. (2020). Experimental evaluation of permeable cable-supported façades subjected to wind and earthquake loads. Engineering Structures, 214, https://doi.org/10.1016/j.engstruct.2020.110679.
- Sigmund, V., & Penava, D. (2012, September). Experimental study of masonry infilled R/C frames with opening. Paper presented at the 15th World Conference on Earthquake Engineering, Lisbon, Portugal. https://www.iitk.ac.in/nicee/wcee/article/WCEE2012_2322.pdf.
- Sivanerupan, S., Wilson, J. L., Gad, E. F., & Lam, N.T.K. (2016). Analytical study of point fixed glass facxade systems under monotonic in-plane loading. Advances in Structural Engineering, 19(4), 611–626. https://doi.org/10.1177/1369433216630192.
- Sivanerupan, S., Wilson, J., Gad, E., & Lam, N. (2014). Drift performance of point fixed glass façade systems. Advances in Structural Engineering, 17(10), 1481–1495. https://doi.org/10.1260/1369-4332.17.10.1481.
- Tasligedik, A. S., & Pampanin, S. (2017). Rocking cantilever clay brick infill wall panels: A novel low damage infill wall system. Journal of Earthquake Engineering, 21(7), 1023–1049. https://doi.org/10.1080/13632469.2016.1190797.
- Tasnimi, A. A., & Mohebkhah, A. (2011). Investigation on the behavior of brick-infilled steel frames with openings, experimental and analytical approaches. Engineering Structures, 33(3), 968–980. https://doi.org/10.1016/j.engstruct.2010.12.018.
- Torres, J., Guitart, N., & Teixidor, C. (2017). Glass fins with embedded titanium inserts for the façades of the new Medical School of Montpellier. Glass Structures and Engineering, 2(2), 201–219. https://doi.org/10.1007/s40940-017-0049-2.
- Villazón, R. E., Medina, J. M., Parra, N., Ramos, D., & Murillo, L. D. (2020). A Detailed Look at Ceramic Façade Systems in Bogotá Searching Innovation Opportunities. Journal of Facade Design and Engineering, 8(2), 81–100. https://doi.org/10.7480/jfde.2020.2.4210.
- Xiang, Y., Zhang, Y.-J., Guo, J., & Chen, J. (2020). Effect of the primary structure on the seismic response of the cable-net façade. Engineering Structures, 220, 110989. https://doi.org/10.1016/j.engstruct.2020.110989.
|