تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,122,519 |
تعداد دریافت فایل اصل مقاله | 97,230,496 |
حذف سرب از محلولهای آبی توسط ذرات پارامغناطیسی نانوارگانوکامپوزیت: مطالعه مدلهای سینتیک و همدمای جذب | ||
تحقیقات آب و خاک ایران | ||
دوره 54، شماره 6، شهریور 1402، صفحه 961-979 اصل مقاله (2.15 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.360233.669507 | ||
نویسندگان | ||
محبوبه ابوالحسنی زراعتکار* 1؛ حمیدرضا رفیعی سربیژن2 | ||
1گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران. | ||
2گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران | ||
چکیده | ||
در این پژوهش جذب سرب توسط دو جاذب رس مونتموریلونیت (Mt) و ذرات پارامغناطیسی نانوارگانوکامپوزیت تهیه شده از رس مونتموریلونیت اصلاحشده با سورفکتانت آلی هگزادسیل تری متیل آمونیوم و نانوذرات مگنتیت (MagMt-H) بررسی شد. نانوارگانوکامپوزیت تهیه شده (MagMt-H) با استفاده از آنالیزهای پراش پرتو ایکس، طیف سنجی مادون قرمز تبدیل فوریه و میکروسکوپ الکترونی روبشی شناسایی شد. تاثیر غلظت اولیه بر جذب سرب از محلول آبی توسط دو جاذب بررسی شد. بهمنظور درک فرآیند جذب سرب از دو مدل همدمای جذب (لانگمویر و فروندلیچ) و مدلهای سینتیکی (شبه مرتبه اول، شبه مرتبه دوم، الوویچ و پخشیدگی درون ذرهای) استفاده شد. بررسی مدلهای همدما و سینتیک جذب نشان داد که جذب سطحی در نانوارگانوکامپوزیت از مدل همدمای لانگمویر و مدل سینتیکی شبه مرتبه دوم پیروی میکند. حداکثر ظرفیت جذب تکلایه تخمین زده شده از مدل لانگمویر در دمای 30 درجه سلسیوس برای نانوارگانوکامپوزیت (58/73 میلیگرم بر گرم) بسیار بیشتر از مقدار حاصل از رس مونتموریلونیت (54/49 میلیگرم بر گرم) میباشد. سرعت جذب اولیه (h) برای جاذب نانوارگانوکامپوزیت (MagMt-H) با مقدار 809/18 میلیگرم بر گرم در دقیقه نسبت به جاذب مونتموریلونیت (Mt) با مقدار 948/0 میلیگرم بر گرم در دقیقه نشاندهنده سرعت بسیار بیشتر جذب سرب بوسیله نانوارگانوکامپوزیت (MagMt-H) بود. نتایج این مطالعه نشان داد که نانوارگانوکامپوزیت تهیه شده بدلیل ایجاد مکانهای جذب جدید میتواند بهعنوان یک جاذب بسیار کارآمد و با ظرفیت جذب بالا و در مدت زمان کم برای حذف سرب از محلولهای آبی بهکار رود. | ||
کلیدواژهها | ||
جذب سرب؛ نانوارگانوکامپوزیت؛ سینتیک جذب؛ همدمای لانگمویر | ||
مراجع | ||
Abolhasani Zeratkar, M., & Lakzian, A. (2023). Evaluation organoclay produced using magnetite nanoparticles and bacterial exopolysachharide and therir effects on urease, phosphatase and dehydrogenase soil enzymes. Iranian Journal of Soil and Water Research, 53, 2721-238. https://doi.org/10.22059/ijswr.2022.348435.669358 (In persian). Alboghbeish, M., Larki, A., & Saghanezhad, S. J. (2022). Effective removal of Pb (II) ions using modified magnetic graphene oxide nanocomposite; optimization by response surface methodologhy. Scientific Reports, 12, 9658. https://doi.org/10.1038/s41598-022-13959-8. Al-Ghouti, M. A., & Daana, D. A., (2020). Guidelines for the use and interpretation of adsorption isotherm models: a review. Journal of Hazardous Materials, 393, 122383. http://doi.10.1016/j.jhazmat.2020.122383. Ali, S. A., Kazi, I. W., & Ullah, N. (2015). New chelating ion-exchange resin synthesized via the cyclopolymerization protocol and its uptake performance for metal ion removal. Industrial and Engineering Chemistry Research, 54, 9689–9698. https://doi.org/10.1021/acs.iecr.5b02267. Arruebo, M., Fernandez-Pacheco, R., Irusta, S., Arbiol, J., Ibarra, M.R., & Santamaria, J. (2006). Sustained release of doxorubicin from zeolite-magnetite nanocomposites prepared by mechanical activation. Nanotechnology, 17, 4057–4064. http://doi.10.1088/0957-4484/17/16/011. Babel, S., & Opiso, E. M. (2007). Removal of Cr from synthetic wastewater by sorption into volcanic ash soil. International journal of Environmental Science and Technology, 4, 99–107. http://doi.10.1007/BF03325967. Banerjee, S. S., & Chen, D. H. (2007). Fast removal of copper ions by gum Arabic modified magnetic nano-adsorbent. Journal of Hazardous Materials, 147, 792–799. http://doi. 10.1016/j.jhazmat.2007.01.079. Barraque, F., Montes, M. L., Fernandez, M. A., Mercader, R. C., Candal, R. J., & Torres, R. M., (2018). Synthesis and characterization of magnetic-montmorillonite and magnetic-organo-montmorillonite: surface sites involved on cobalt sorption. Journal of Magnetism and Magnetic Materials, 466, 376–384. http://dx.doi.org/10.1016/j.jmmm.2018.07.052. Bourliva, A., Michailidis, K., Sikalidis, C., & Filippidis, A. (2013). Spectroscopic and thermal study of bentonites from Milos Island, Greece. Bulletin of the Geological of Society of Greece, 47, 2020–2029. https://doi.org/10.12681/bgsg.11030. Bourliva, A., Michailidis, K., Sikalidis, C., Filippidis, A., & Betsiou, M. (2013). Lead removal from aqueous solutions by natural Greek bentonites. Clay Minerals, 48(5), 771-787. https://doi.org/10.1180/claymin.2013.048.5.09. Brown, P. A., Gill, S. A., & Allen, S. J. (2000). Metal removal from wastewater using peat. Water Research, 34, 3907–3916. https://doi.org/10.1016/S0043-1354(00)00152-4. Bruce, I. J., Taylor, J., Todd, M., Davies, M. J., Borioni, E., Sangregorio, C., & Sen, T. (2004). Synthesis, characterisation and application of silica-magnetite nanocomposites. Journal of Magnetism and Magnetic Materials, 284, 145–160. https://doi.org/10.1016/j.jmmm.2004.06.032. Chen, D., Shen, W., Wu, S., Chen, C., Luo, X., & Guo, L. (2016). Ion exchange induced removal of Pb(II) by MOF-derived magnetic inorganic sorbents. Nanoscale, 8, 7172–7179. https://doi.org/10.1039/C6NR00695G. Chun, C. L., Hozalski, R. M., & Arnold, T. A. (2005). Degradation of drinking water disinfection byproducts by synthetic goethite and magnetite. Environmental Science and Technology, 39, 8525–8532. http://doi.10.1021/es051044g. Cornell, R. M., & Schwertmann, U. (2003). The Iron Oxides: Structure, Properties, Reactions, Occurrences and Uses, 2nd Edition, Wiley-VCH, Weinheim, 2003. http;//doi.10.1002/3527602097. Dehmani, Y., Alrashdi, A. A., Lgaz, H., Lamhasni, T., Abouarnadasse, S., & Chung, I. M. (2020). Removal of phenol from aqueous solution by adsorption onto hematite (α-Fe2O3): mechanism exploration from both experimental and theoretical studies. Arabian Journal of Chemistry, 13, 5474–5486. https://doi.org/10.1016/j.arabjc.2020.03.026. Demirbas, E., Kobya, M., Senturk, E., & Ozkan, T. (2004). Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes. Water SA, 30, 533–539. http://dx.doi.org/10.4314/wsa.v30i4.5106. Dinh, V. P., Nguyen, M. D., Nguyen, Q. H., Do, T. T., Luu, T. T., Luu, A. T., Tap, T. D., Ho, T. H., Phan, T. P., Nguyen, T. D., & Tan, L. V. (2020). Chitosan-MnO2 nanocomposite for effective removal of Cr (VI) from aqueous solution. Chemosphere, 257, 127147. http://doi.10.1016/j.chemosphere.2020.127147. Dinh, V. P., Tran, N. Q., Le, N. Q. T., Tran, Q. H., Nguyen, T. D., & Le, V. T. (2019). Facile synthesis of FeFe2O4 magnetic nanomaterial for removing methylene blue from aqueous solution. Progress in Natural Science: Materials International, 29, 648–654. https://doi.10.1016/j.pnsc.2019.11.009. Dinh, V. P., Xuan, T. D., Hung, N. Q., Luu, T. T., Do, T. T., Nguyen, T. D., Nguyen, V. D., Anh, T. T. K., & Tran, N. Q., (2021). Primary biosorption mechanism of lead (II) and cadmium (II) cations from aqueous solution by pomelo (Citrus maxima) fruit peels. Environmental Science and Pollution Research, 28(45). http://doi.10.1007/s11356-020-10176-6. Dong, L., Pan, S., Liu, J., Wang, Z., Hou, L. A., & Chen, G. (2020). Performance and mechanism of Pb (II) removal from water by the spent biological activated carbon (SBAC) with different using-time. Journal of Water Process Engineering, 36, 101255. http://doi.10.1016/j.jwpe.2020.10125.5. Elmi, F., Hosseini, T., Taleshi, M.S. & Taleshi, F. (2017). Kinetic and thermodynamic investigation into the lead adsorption process from wastewater through magnetic nanocomposite Fe3O4/CNT. Nanotechnology for Environmental Engineering. 2, 13. https://doi.org/10.1007/s41204-017-0023-x. Erdem, M., Gur, F., & Tumen, F. (2004). Cr (VI) reduction in aqueous solutions by siderite, Journal of Hazardous Materials, 113, 219–224. http://doi.10.1016/j.jhazmat.2004.06.012. Fayazi, M. (2019). Facile hydrothermal synthesis of magnetic sepiolite clay for removal of Pb (II) from aqueous solutions. Analytical and Bioanalytical Chemistry Research, 6, 125-136. Feltin, N., Pileni, M.P. (1997). New technique to make ferrite nanosized particles. Journal de Physique Archives, 7, 609–610. https://doi.org/10.1051/jp4:19971252. Foo, K.Y., & Hameed, B.H. (2010). Insights into the modeling of adsorption isotherm systems. Chemical Engineering Journal, 156, 2–10. https://doi.org/10.1016/j.cej.2009.09.013. Gupta, S. S., & Bhattacharyya K. G. 2006. Removal of Cd (II) from aqueous solution by kaolinite, montmorillonite and their poly (oxo zirconium) and tetrabutylammonium derivatives. Journal of Hazardous Materials, B128, 247– 257. https://doi.10.1016/j.jhazmat.2005.08.008. Hamidpour, M., Kalbasi, M., Afyuni, M., Shariatmadari, H., Furrer, G. (2011). Sorption lead on Iranian bentonite and zeolite: Kinetics and isotherms. Environmental Earth Sciences, 62, 559-568. https://doi.10.1007/s12665-010-0547-x. Hayati, A. M. (2012). Use of FTIR spectroscopy in the characterization of natural and treated nanostructured bentonites (montmorillonites). Particulate Science and Technology, 30, 553–564. http://doi.10.1080/02726351.2011.615895. Ho, Y. S., & Mckay, G. (2002). Application of kinetic models to the sorption of copper on to peat. Adsorption Science & Technology, 20, 797-815. http://dx.doi.org/10.1260/026361702321104282. Ho, Y.S., & Mckay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5. Hu, J., Chen, G. H., & Lo, I. M. C. (2005). Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Research., 39, 4528–4536. http://doi.org/10.1016/j.waters.2005.05.051. Hu, J., Lo, I. M. C., & Chen, G. (2004). Removal of Cr (VI) by magnetite nanoparticle. Water Science and Technology, 50(12), 139–146. https://doi.org/10.2166/wst.2004.0706. Huang, Z., Li, Y., Chen, W., Shi, J., Zhang, N., Wang, X., Li, Z., Gao, L., & Zhang, Y. (2017). Modified bentonite adsorption of organic pollutants of dye wastewater. Material Chemistry and Physics, 202, 266–276. http://doi.10.1016/j.matchemphys.2017.09.028. Humelnicu, D., Dinu, M. V., & Dragan, E. S. (2011). Adsorption characteristics of UO22+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. Journal of Hazardous Materials, 185, 447–455. https://doi.org/10.1016/j.jhazmat.2010.09.053. Kang, Y.S., Risbud, S., Rabolt, J. F., Stroeve, P. (1996). Synthesis and characterization of nanometer-size Fe3O4 and gamma-Fe2O3 particles. Chemistry of Materials, 8, 2209–2211. https://doi.org/10.1021/cm960157j. Lagergren, S. (1898). Zur theorie der sogenannten adsorptiongeloster stoffe. Handlingar, 24, 1-39. https://doi.10.1007/BF01501332. Lalvani, S. B., Hubner, A., & Wiltowski, T. S. (2010). Chromium adsorption by lignin. Energy Source, 22, 45–56. https://doi.org/10.1080/00908310050014207. Liang, M., Wang, D., Zhu, Y., Zhu, Z., Li, Y., & Huang, C. P. (2018). Nano-hematite bagasse composite (n-HBC) for the removal of Pb (II) from dilute aqueous solutions. Journal of Water Process Engineering, 21, 69–76. http://doi.10.1016/j.jwpe.2017.11.014 Liang, X., Xu, Y., Wang, L., Sun, Y., Lin, D., Sun, Y., Qin, X., & Wan, Q. (2013). Sorption of Pb2+ on mercapto functionalized sepiolite. Chemosphere, 90, 548–555. https://doi.org/10.1016/j.chemosphere.2012.08.027. Liu, B., Lv, X., Meng, X., Yu, G., & Wang, D. (2013). Removal of Pb (II) from aqueous solution using dithiocarbamate modified chitosan beads with Pb (II) as imprinted ions. Chemical Engineering Journal, 220, 412–419. https://doi.org/10.1016/j.cej.2013.01.071. Liu, C. H., Chuang, Y. H., Chen, T. Y., Tian, Y., Li, H., Wang, M. K., & Zhang, W. (2015). Mechanism of arsenic adsorption on magnetite nanoparticles from water: thermodynamic and spectroscopic studies. Environmental science and Technology, 49, 7726–7734. https://doi.org/10.1021/acs.est.5b00381. Lunge, S., Singh, S., & Sinha, A. (2014). Magnetic iron oxide (Fe3O4) nanoparticles from tea waste for arsenic removal. Journal of Magnetism and Magnetic Materials, 356, 21–31. https://doi.org/ 10.1016/j.jmmm.2013.12.008. Matlock, M. M., Howerton, B. S., & Atwood, D. A., (2002). Chemical precipitation of lead from lead battery recycling plant wastewater. Industrial and Engineering Chemistry Research, 41, 1579–1582. http://doi.10.1021/IE010800Y. Montes, M. L., Barraque, F., Bursztyn Fuentes, A. L., Taylor, M. A., Mercader, R. C., Miehe-Brendle, J., & Torres, R. M. (2020). Effect of synthetic beidellite structural characteristics on the properties of beidellite/Fe oxides magnetic composites as Sr and Cs adsorbent materials. Materials Chemistry and Physics, 245, 122760. https://doi.org/ 10.1016/j.matchemphys.2020.122760. Muthuraman, R. M., Murugappan, A., & Soundharajan, B. (2021). Highly effective removal of presence of toxic metal concentrations in the wastewater using microalgae and pre-treatment processing. Applied Nanoscience, 13(1). http://doi.10.1007/s13204-021-01795-7. Ngomsik, A. F., Bee, A., Draye, M., Cote, G., & Cabuil, V. (2005). Magnetic nano and microparticles for metal removal and environmental applications: a review. Comptes Rendus Chimie, 8(6-7), 963–970. https://doi.org/10.1016/j.crci.2005.01.001. Novakova, A. A., Lanchinskaya, V. Y., Volkov, A. V., Gendler, T. S., Kiseleva, T. Y., Moskvina, M. A., & Zezin, S. B. (2003). Magnetic properties of polymer nanocomposites containing iron oxide nanoparticles, Journal of Magnetism and Magnetic Materials, 258, 354–357. http://doi.10.1016/S0304-8853(02)01062-4. Oliveira, L. C. A., Rios, R. V. R., Fabris, J. D., Sapag, K., Garg, V. K., & Lago, R.M. (2003). Clay-iron oxide magnetic composites for the adsorption of contaminants in water. Applied Clay Science, 22, 169–177. http://doi.10.1016/S0169-1317(02)00156-4. Orbell, J. D., Godhino, L., Bigger, S. W., Nguyen, T. M., & Ngeh, L. N. (1997). Oil spill remediation using magnetic particles—an experiment in environmental technology, Journal of Chemical Education, 74, 1446–1448. http://doi. 10.1021/ed074p1446. Ozcan, A. S., Gok, O., & Ozcan, A. (2009). Adsorption of lead (II) ions onto 8-hydroxy quinoline-immobilized bentonite. Journal of Hazardous Materials, 161:499–509. https://doi.org/10.1016/j.jhazmat.2008.04.002. Ozdes, D., Duran, C., & Senturk, H. B. (2011). Adsorptive removal of Cd (II) and Pb (II) ions from aqueous solutions by using Turkish illitic clay. Journal of Environmental Management, 92, 3082-3090. http://doi.10.1016/j.jenvman.2011.07.022. Pan, M., Lin, X., Xie, J., & Huang, X. (2017). Kinetic, equilibrium and thermodynamic studies for phosphate adsorption on aluminum hydroxide modified palygorskite nano-composites. RSC advances, 7(8), 4492-4500. https://doi.org/10.1039/C6RA26802A. Rajput, S., Pittman Jr, C. U., & Mohan, D. (2016). Magnetic magnetite (Fe3O4) nanoparticle synthesis and applications for lead (Pb2+) and chromium (Cr6+) removal from water. Journal of colloid and interface science, 468, 334-346. https://doi.org/10.1016/j.jcis.2015.12.008. Santhosh, C., Nivetha, R., Kollu, P., Srivastava, V., Sillanpa, M., Grace, A. N., & Bhatnagar, A. (2017). Removal of cationic and anionic heavy metals from water by 1D and 2D-carbon structures decorated with magnetic nanoparticles. Scientific Reports, 7, 14107. http://doi.10.1038/s41598-017-14461-2. Shah, D. B., Phadke, A. V., & Kocher, W. M. (1995). Lead removal from foundry waste by solvent extraction. Journal of the Air and Waste Management Association, 45, 150–155. https://doi.org/10.1080/10473289.1995.10467354. Silva Valenzuela, M. G., Hui, W. S., & Valenzuela Diaz, F. R. (2016). FTIR Spectroscopy of some Brazilian clays. In: Ikhmayies, S.J., Li, B., Carpenter, J.S., Hwang, J.-Y., Monteiro, S.N., Li, J., Firrao, D., Zhang, M., Peng, Z., Escobedo-Diaz, J. P., Bai, C. (Eds.), Characterization of Minerals, Metals, and Materials. Springer International Publishing, pp. 227–234. Htpps://doi.10.1007/978-3-319-48210-1-27. Tarekegn, M. M., Balakrishnan, R. M., Hiruy, A. M., Dekebo, A. H., & Maanyam, H. S. (2022). Nano-Clay and Iron Impregnated Clay Nanocomposite for Cu2+ and Pb2+ Ions Removal from Aqueous Solutions. Air, Soil and Water Research, 2022, 15. http://doi.10.1177/11786221221094037. Tran, C. V., Quang, D. V., Nguyen Thi, H. P., Truong, T. N., & La, D. D. (2020). Effective removal of Pb (II) from aqueous media by a new design of Cu–Mg binary ferrite. ACS Omega, 5, 7298–7306. https://doi.org/10.1021/acsomega.9b04126. Uddin, M. K. (2017). A review on the adsorption of heavy metals by clay minerals, with special focus on the past decade. Chemical Engineering Journal, 308, 438–462. https://doi.org/10.1016/j.cej.2016.09.029. Wang, S., Dong, Y., He, M., Chen, L., & Yu, X. (2009). Characterization of GMZ bentonite and its application in the adsorption of Pb (II) from aqueous solutions. Applied clay science, 43(2), 164-171. https://doi.org/10.1016/j.clay.2008.07.028. Wang, X. S., He, L., Hu, H. Q., & Wang, J. (2008). Effect of temperature on the Pb (II) removal from single aqueous solution by a locally natural mordenite: Equilibrium and kinetic modelling. Separation Science and Technology, 43: 908-922. http://doi.10.1080/01496390701870697. Xu, D., Tan, X. L., Chen, C. L., & Wang, X. K. (2008). Adsorption of Pb (II) from aqueous solution to MX-80 bentonite: effect of pH, ionic strength, foreign ions and temperature. Applied Clay Science, 41, 37-46. https://doi.org/10.1016/j.clay.2007.09.004. Yadanaparthi, S. K. R., Graybill, D., & von Wandruszka, R. (2009). Adsorbents for the removal of arsenic, cadmium, and lead from contaminated waters. Journal of hazardous materials, 171(1-3), 1-15. https://doi.org/10.1016/j.jhazmat.2009.05.103. Yang, S., Zhao, D., Zhang, H., Lu, S., Chen, L., & Yu, X. (2010). Impact of environmental conditions on the sorption behavior of Pb (II) in Na-bentonite suspensions. Journal of hazardous materials, 183, 632-640. https://doi.org/10.1016/j.jhazmat.2010.07.072. Yuan, P., He, H. P., Bergaya, F., Wu, D. Q., Zhou, Q., & Zhu, J.X. (2006). Synthesis and characterization of delaminated iron-pillared clay with meso-microporous structure. Microporous and Mesoporous Materials, 88, 8–15. http://doi.10.1016/j.micromeso.2005.08.022. Zhang, M., Yin, Q., Ji, X., Wang, F., Gao, X., & Zhao, M., (2020). High and fast adsorption of Cd (II) and Pb(II) ions from aqueous solutions by a waste biomass based hydrogel. Scientific Reports, 10, 3285. https://doi.org/10.1038/s41598-020-60160-w. Zhou, Q., He, H. P., Zhu, J. X., Shen, W., Frost, R. L., & Yuan, P. (2008). Mechanism of p-nitrophenol adsorption from aqueous solution by HDTMA+-pillared montmorillonite implications for water purification. Journal of Hazardous Materials, 154, 1025–1032. https://doi.10.1016/j.jhazmat.2007.11.009. Zhou, Y., Gao, B., Zimmerman, A. R., Chen, H., Zhang, M., & Cao, X. (2014). Biochar supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresource Technology, 152, 538–542. https://doi.org/10.1016/j. biortech.2013.11.021. Ziolo, R. F., Giannelis, E. P., Weinstein, B. A., Ohoro, M. P., Ganguly, B. N., Mehrotra, V., Russell, M. W., & Huffman, D. R. (1992). Matrix-mediated synthesis of nanocrystalline gamma-Fe2O3—a new optically transparent magnetic material. Science, 257, 219–223. http://doi.10.1126/science.257.5067.219. Zou, C., Jiang, W., Liang, J., Sun, X., & Guan, Y. (2019). Removal of Pb (II) from aqueous solutions by adsorption on magnetic bentonite. Environmental Science and Pollution Research International, 26, 1315-1322. https://doi.org/10.1007/s11356-018-3652-0. | ||
آمار تعداد مشاهده مقاله: 189 تعداد دریافت فایل اصل مقاله: 184 |