- Abedini, M., Pour Farrash Zadeh, F., & Gharachorlu, -. M. (2021). Analysis and Modeling of the Relationship between Monthly Discharge and Geomorphometric Characteristics (Case Study: Kashafrood Watershed). Geography and Environmental Planning, 32(4), 29-44. (In Persian)
- Ataei, H., & Shiran, M. (2011). Identifying homogeneous hydrological basins base on effective geomorphologic variants on flood by cluster analysis Introduction. Geography and Environmental Planning, 22(2), 79-98. (In Persian)
- Ahn, H., Shin, J. Y., Jeong, C., & Heo, J. H. (2018). Assessing applicability of self-organizing map for regional rainfall frequency analysis in South Korea. Journal of Korea Water Resources Association, 51(5), 383-393.
- Arora, A., Arabameri, A., Pandey, M., Siddiqui, M. A., Shukla, U. K., Bui, D. T., ... & Bhardwaj, A. (2021). Optimization of state-of-the-art fuzzy-metaheuristic ANFIS-based machine learning models for flood susceptibility prediction mapping in the Middle Ganga Plain, India. Science of the Total Environment, 750, 141565.
- Asghari Sersekanroud, S., & Saeedi Seta, A. (2023). Investigating the Effects of Land Use Changes on the Runoff of Qara Chai River Basin Using the SWAT Model. Geography and Environmental Planning, 34(3), 95-118. (In Persian)
- Chang, L. C., Wang, W. H., & Chang, F. J. (2021). Explore training self-organizing map methods for clustering high-dimensional flood inundation maps. Journal of Hydrology, 595, 125655.
- Chavoshi, S., Azmin Sulaiman, W. N., Saghafian, B., Sulaiman, M. N., & Latifah, A. M. (2012). Soft and hard clustering methods for delineation of hydrological homogeneous regions in the southern strip of the C aspian S ea W atershed. Journal of Flood Risk Management, 5(4), 282-294.
- Davies, D. L., & Bouldin, D. W. (1979). A cluster separation measure. IEEE transactions on pattern analysis and machine intelligence, (2), 224-227.
- Dehariya, V. K., Shrivastava, S. K., & Jain, R. C. (2010, November). Clustering of image data set using K-meansand fuzzy K-meansalgorithms. In 2010 International conference on computational intelligence and communication networks (pp. 386-391). IEEE.
- Drissia, T. K., Jothiprakash, V., & Sivakumar, B. (2022). Regional flood frequency analysis using complex networks. Stochastic Environmental Research and Risk Assessment, 36(1), 115-135.
- Eslamian, S. S., Abrishamchi, A., & Farzamnia, K. (1999). Regionalizing Flood Frequency Estimation by Cluster Analysis. Journal of Water and Wastewater; Ab va Fazilab. (In Persian)
- Eslaminezhad, S. A., Eftekhari, M., Mahmoodizadeh, S., Akbari, M., & Haji Elyasi, A. (2021). Evaluation of Tree-Based Artificial Intelligence Models to Predict Flood Risk using GIS. Iran-Water Resources Research, 17(2), 174-189. (In Persian)
- Farsadnia, F., & Moghaddamnia, A. (2014). Regional Flood Frequency Analysis by Self-Organizing Feature Maps and Fuzzy Clustering Approach. Iran-Water Resources Research, 9(3), 24-36. (In Persian)
- Farsadnia, F., & Ghahreman, B. (2015). Using Hierarchical Clustering in Order to Increase Efficiency of Self-Organizing Feature Map to Identify Hydrological Homogeneous Regions for Flood Estimation. Water and Soil, 29(5), 1207-1218. (In Persian)
- Gao, Q., Li, G., Bao, J., & Wang, J. (2021). Regional Frequency Analysis Based on Precipitation Regionalization Accounting for Temporal Variability and a Nonstationary Index Flood Model. Water Resources Management, 35(13), 4435-4456.
- Ghaderi K, Motamedvaziri B, Vafakhah M, Dehghani A. Comparison of Artificial Neural Network, Decision Tree and Bayesian Network Models in Regional Flood Frequency Analysis using L-moments and Maximum Likelihood Methods in Karkheh and Karun Watersheds. JWSS, 25 (4), 313-326 . (In Persian)
- Ghosh, S., Saha, S., & Bera, B. (2022). Flood susceptibility zonation using advanced ensemble machine learning models within Himalayan foreland basin. Natural Hazards Research.
- Hosking, J.R.M., & Wallis, J.R. (1993). Some statistics useful in regional frequency analysis. Water Resources Research, 29(2), 271-281. (Correction: 31(1), 1995, p. 251).
- Inyang, U. G., Akpan, E. E., & Akinyokun, O. C. (2020). A hybrid machine learning approach for flood risk assessment and classification. International Journal of Computational Intelligence and Applications, 19(02), 2050012.
- Kardan Moghaddam, H., Ghordoyee Milan, S., Kayhomayoon, Z., Rahimzadeh kivi, Z., & Arya Azar, N. (2021). The prediction of aquifer groundwater level based on spatial clustering approach using machine learning. Environmental Monitoring and Assessment, 193, 1-20.
- Kohonen T. (2001). Self-Organizing Maps. Springer, Berlin, Germany.
- Kumar, R., Goel, N. K., Chatterjee, C., & Nayak, P. C. (2015). Regional flood frequency analysis using soft computing techniques. Water Resources Management, 29(6), 1965-1978.
- Ley, R., Casper, M.C., Hellebrand, H., & Merz, R. (2011). Catchment classification by runoff behavior with self-organizing maps (SOM). Hydrology and Earth System Sciences, 15(9), 2947-2962.
- Lin, G., & Chen, L. (2006). Identification of homogenous regions for regional frequency analysis using the self-organizing map. Journal of Hydrology, 324, 1-9.
- Lin, G., & Wang, C. (2006). Performing cluster analysis and discrimination analysis of hydrological factors in one step. Advances in Water Resources, 29, 1573-1585.
- Li, Y., & Hong, H. (2023). Modelling flood susceptibility based on deep learning coupling with ensemble learning models. Journal of Environmental Management, 325, 116450.
- Luu, C., Ha, H., Bui, Q. D., Luong, N. D., Khuc, D. T., Vu, H., & Nguyen, D. Q. (2023). Flash flood and landslide susceptibility analysis for a mountainous roadway in Vietnam using spatial modeling. Quaternary Science Advances, 11, 100083.
- MacQueen, J. (1967, June). Some methods for classification and analysis of multivariate observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, 1 (14), 281-297.
- Nachappa, T. G., Piralilou, S. T., Gholamnia, K., Ghorbanzadeh, O., Rahmati, O., & Blaschke, T. (2020). Flood susceptibility mapping with machine learning, multi-criteria decision analysis and ensemble using Dempster Shafer Theory. Journal of hydrology, 590, 125275.
- Rao, R.A., & Srinivas, V.V. (2005). Regionalization of watersheds by hybrid-cluster analysis. Journal of Hydrology, 318, 37-56.
- Regier, E., Naughton, J., & McDonald, W. (2022). Transposing flood risk from extreme rainfall events: A case study of Hurricane Harvey. Journal of Flood Risk Management, 15(2), e12778.
- Rostami, R. (2003). Regional flood frequency analysis using linear moments (case study of Halil River basin and West Azerbaijan province basins). Master's Thesis, Faculty of Agriculture, Shahid Bahonrakerman University. (In Persian)
- Srinivas, V.V., Tripathi, S., Ramachandra Rao, A. and Govindaraju, R. S. 2007. Regional flood frequency analysis by combining self-organizing feature map and fuzzy clustering. Journal of Hydrology, (348), 148-166.
- Talukdar, S., Ghose, B., Shahfahad, Salam, R., Mahato, S., Pham, Q. B., ... & Avand, M. (2020). Flood susceptibility modeling in Teesta River basin, Bangladesh using novel ensembles of bagging algorithms. Stochastic Environmental Research and Risk Assessment, 34, 2277-2300.
- Towfiqul Islam, A.R., Talukdar, S., Mahato, S., Kundu, S., UddinEibek, K., Bao Pham, Q., Kuriqi, A., Nguyen, & ThuyLinh, T. (2021). Flood susceptibility modelling using advanced ensemble machine learning models, Geoscience Frontiers, 12(3), 101075.
- Tripathi, G., Pandey, A. C., & Parida, B. R. (2022). Flood Hazard and Risk Zonation in North Bihar Using Satellite-Derived Historical Flood Events and Socio-Economic Data. Sustainability, 14(3), 1472.
- Vesanto, J., Himberg, J., Alhoniemi, E., &nd Parhankangas, J. (2000). SOFM Toolbox for Matlab 5. Technical Report A57. Neural Networks Research Centre, Helsinki University of Technology, Helsinki, Finland.
- Vesanto, J., & Alhoniemi, R. (2000). Clustering of the self-organizing map, IEEE Neural, Netw, 11 (3), 586-600.
- Wilppu, R. (1997). The Visualisation Capability of Self Organizing Maps to Detect Deviation in Distribution Control. TUCS Technical Report No. 153, Turku Centre for Computer Science, Finland.
- Zarei, M., Zandi, R., & Naemitabar, M. (2022). Assessment of Flood Occurrence Potential using Data Mining Models of Support Vector Machine, Chaid and Random Forest (Case study: Frizi watershed). JWMR, 13 (25), 133-144. (In Persian)
|