تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,092,398 |
تعداد دریافت فایل اصل مقاله | 97,196,316 |
برآورد درصد ذرات خاک با استفاده از روش طیفسنجی مرئی-مادون قرمز نزدیک در منطقه سمیرم اصفهان | ||
تحقیقات آب و خاک ایران | ||
دوره 54، شماره 6، شهریور 1402، صفحه 915-931 اصل مقاله (5.83 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.359898.669505 | ||
نویسندگان | ||
فاطمه رحمتی* 1؛ سعید حجتی2؛ کاظم رنگزن3؛ احمد لندی4 | ||
1دانشجوی دکتری گروه علوم و مهندسی خاک،دانشکده کشاورزی،دانشگاه شهید چمران اهواز،اهواز،خوزستان،ایران | ||
2عضو هیئت علمی گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهید چمران اهواز، خوزستان، ایران | ||
3عضو هیئت علمی گروه سنجش از دور و GIS ،دانشکده علوم زمین ، دانشگاه شهید چمرا ن اهواز،اهواز ،خوزستان،ایران | ||
4عضو هیئت علمی گروه علوم و مهندسی خاک ،دانشکده کشاورزی،دانشگاه شهید چمران اهواز،اهواز،خوزستان،ایران | ||
چکیده | ||
مطالعه حاضر با هدف برآورد درصد ذرات خاک با استفاده از روش طیفسنجی مرئی و مادون قرمز نزدیک در منطقه سمیرم استان اصفهان انجام بود. تعداد 200 نمونه خاک سطحی (10 سانتیمتری) از منطقه سمیرم اصفهان (طول جغرافیایی΄ 17 ˚ 51 تا΄3˚ 52 شرقی وعرض جغرافیایی΄ 42 ˚30 تا ΄51˚ 31 شمالی) جمعآوری گردید. نمونهها هواخشک شدند و از الک دو میلیمتری عبور داده شدند و درصد ذرات خاک در آزمایشگاه با روش هیدرومتری تعیین شد. همچنین طیفسنجی نمونههای خاک با استفاده از دستگاه طیفسنج زمینی انجام گرفت. سپس روشهای پیشپردازش مشتق اول با فیلتر ساویتزکی گلای، تصحیح پخشیده چندگانه و متغیر نرمال استاندارد بر روی طیفها انجام شدند. برای برقراری ارتباط بین درصد ذرات خاک با ویژگیهای طیفی آن از مدلهای رگرسیون حداقل مربعات جزئی، ماشین بردار پشتیبان و شبکه عصبی استفاده گردید. بهترین نتیجه برای برآورد سیلت با استفاده از شبکه عصبی مصنوعی با روش پیشپردازش تصحیح پخشیده چندگانه با RPD (نسبت انحراف معیار به RMSE) بیشتر از 2، 98/0=R2 و کمترین مقدار g/Kg 08/1=RMSE بهدست آمد. نتایج مطلوبی نیز برای مدل شبکه عصبی مصنوعی به ترتیب با روشهای پیشپردازش تصحیح پخشیده چندگانه و متغیر نرمال استاندارد برای مقادیر رس (RPD بیشتر از 2، 94/0=R2 و کمترین مقدار g/Kg 21/1=RMSE-) و شن (انحراف پیشبینی باقیمانده بیشتر از 2، 84/0=R2 و کمترین مقدار g/Kg08/1=RMSE) بهدست آمد. به طور کلی، براساس نتایج این مطالعه، طیفسنجی مرئی مادون قرمز نزدیک در برآورد درصد ذرات خاک موفق بوده است و قابلیت جانشینی با روشهای آزمایشگاهی را دارد. | ||
کلیدواژهها | ||
واژههای کلیدی: روشهای پیشپردازش؛ رگرسیون حداقل مربعات جزئی؛ شبکه عصبی مصنوعی؛ رگرسیون ماشین بردار پشتیبان؛ طیفسنجی | ||
مراجع | ||
Ahmadi, A.; Emami, M.; Daccache, A. & He, L. (2021). Soil Properties Prediction for Precision Agriculture Using Visible and Near-Infrared Spectroscopy: A Systematic Review and Meta-Analysis. Agronomy, 11)433:( 1-14. Almeida, J., & Predictive, S. (2002). Non-linear modeling of complex data by artificial neural networks. Current Opinion in Biotechnology, 13: 72-6. Bouyoucos, G. J. (1951). A recalibration of hydrometer method for making mechanical analysis of soil. Agronomy, 43: 434-438. Camo, A. 1998. The Unscrambler User Manual. CAMO ASA Norway. Chaternour, M., Landi, A., Farrokhian Firouzi, A., Noroozi, A.A., Bahrami, H.A. 2020. Spectral behavior modeling of soil texture over dust center of Khuzestan Province using hyperspectral images and Random Forest (RF) model. Advanced applied Geology, 9 (4): 466-479. Chin, W. W., Marcolin, B., & Newsted, P. (1996). A partial least squares latent variable modeling approach for measuring interaction effects: results from a Monte Carlo simulation study and voice mail emotion/adoption study, In proceeding of the 17th international conference on information systems, 16-18 Dec. 1996, Cleveland, Ohio, 21-41. Clark, R.N. 1999. Spectroscopy of rocks and minerals, principles of spectroscopy. John Wiley and Sons. Curcio, D. G., Ciraolo, F. & Minacapilli, M. (2013). Prediction of soil texture distributions using VNIR-SWIR reflectance spectroscopy. Procedia Environmental Sciences, 19: 494-503. Dotto, A. C., Dalmolin, R. S. D., Pedron, F. d. A., Caten, A. T., & Ruiz, L. F. C., (2014). Digital mapping of soil properties: particle size and soil organic matter by diffuse reflectance spectroscopy. Revista Brasileira de Ciência do Solo, 38: 6. 1663-1671. Gras J.P., Barthès, B.G. Mahaut B. & Trupin. S. (2014). Best practices for obtaining and processing field visible and near infrared (VNIR) spectra of topsoil. Geoderma. 215: 126–134. Islam, K., Singh, B., & McBratney, A. (2003). Simultaneous estimation of several soilproperties by ultraviolet, visible and near infrared reflectance spectroscopy. Australian Journal of Soil Research, 41: 1193–1202. Jalalian, A. (1997). The studies of land resources and capability determination in Semirom area. The Ministry of Jahad Sazandegi, Isfahan Province. (in Persian) Janik, L. J., Forrester, S. T. & Rawson, A. (2009). The prediction of soil chemical and physical properties from mid-infrared spectroscopy and combined partial least-squares regression and neural networks (PLS-NN) analysis. Chemometrics and Intelligent Laboratory Systems, 97: 2. 179-188. Karayiannis N. B., & Venetsanopouios A. N. (1993). Artificial Neural Network: learning algorithms, performance evaluation, & application. Kluwer academic publisher. boston. Kuśnierek, K. (2011). Pre-processing of soil visible and near infrared spectra taken in laboratory and field conditions to improve the within-field soil organic carbon multivariate calibration, The Second Global Workshop on Proximal Soil Sensing, Montreal, Canada, 100-103. Lacerda, M. P. C., Demattê, J. A. M., Sato, M. V., Fongaro, C. T., Gallo, B. C., & Souza, A. B. (2016). Tropical Texture Determination by Proximal Sensing Using a Regional Spectral Library and Its Relationship with Soil Classification. Remote Sensing, 8: 701. 1-20. Lazaar, A., Pradhan, B., Naiji, Z., Gourfi, A., El Hammouti, K., Andich, K., & Monir, A. (2021). The manifestation of VIS-NIRS spectroscopy data to predict and map soil texture in the Triffa plain (Morocco). Kuwait Journal of Science, 48: 1. 127-137. Mehrabi Gohari1, E. Matinfar, H.R. Taghizadeh-Mehrjardi, R.A. & Jafari, A. 2022. Visible-Near Infrared (VIS-NIR) Spectrophotometry in Predicting Soil Particle Percentage Using Artificial Neural Network and Partial Least Squares Regression. Journal of Water and Soil, 34(3): 623-635. Lanyon, L.E. & Heald W. R. (1982). Magnesium, calcium, strontium and barium. P. 247-260. In: A. L., Page et al. (ed.), Methods of Soil Analysis. Part2, Agron. Monogr. ASA and SSSA, Madison, Wisconsin. Minasny, B., & McBratney, A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers and Geosciences, 32: 9. 1378-1388. Mouazen, A. M., Kuang, B., D. E. Baerdemaeker & Ramon, H. (2010). Comparison between principal component, partial least squares and back propagation neural network analyses for accuracy of measurement of selected soil properties with visible and near infrared spectroscopy. Geoderma, 158: 23-3. Nelson, R.E. (1982). Carbonate and gypsum. In: A. L. Page et al. (eds.), Methods of Soil Analysis (2nd ed). Part 2, Agronomy Monogaraph. No: 9. ASA and SSSA, Madison, Wisconsin. 181-196. Nawar, S., Buddenbaum, H., Hill, J., Kozak, J., & Mouazen, A. (2016). Estimating the soil clay content and organic matter by means of different calibration methods of vis-NIR diffuse reflectance spectroscopy. Soil and Tillage Research, 155: 510-522. Richards, L.A. (1954). Diagnosis and Improvement of Saline-Alkali Soils.US Departent of Agriculture, Washington DC. Rahmati, F., Hojati, S., Rangzan K., & Landi, A. (2022). Investigating the Efficiency of Visible-Near Infra-Red (NIR) Spectrometry to Estimate Selected Soil Properties in Semirom Area, Isfahan. Journal of Water and Soil, 36(2): 283-300. (In Persian) Rasooli, N., Farpoor M., Khayamim F., and Ranjbar H. (2018). Prediction of selected soil properties using visible and near infrared spectroscopy in Bardsir area, Kerman Province. Iranian Journal of Soil Research, 32(2): 231-243. (in Persian) Reeves, J., McCarty G. & Mimmo, T. (2002). The potential of diffuse reflectance spectroscopy for the determination of carbon inventories in soils. Environmental Pollution, 116: 277–284. Rinnan, A., Van den Berg, F., & Engelsen, S. B. (2009). Review of the most common preprocessing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, 28: 1201–1222. Tsai, F. and W. Philpot. (1998). Derivative analysis of hyperspectral data. Remote Sensing Environment, 66: 41–51. Sargent D.J. (2001). Comparison of artificial neural networks with other statistical approaches: results from medical data sets. Cancer, 91:1636-42. Silva, E. B., Ten Caten, A., Dalmolin, R. S. D., Dotto, A. C., Silva, W. C., & Giasson, E. (2016). Estimating Soil Texture from a Limited Region of the Visible/Near-Infrared Spectrum Digital Soil Morphometrics, Springer, 73-87. Summers, D., Lewis, M., Ostendorf, B., & Chittleborough, D. (2011). Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecological. Indicators. 11: 123-131. Vapnik, V. and Vapnik, V. (1998). Statistical learning theory. Wiley. New York. 156-160. Viscarra Rossel, R.A., Walvoort, D.J.J., McBratney, A.B., Janik, L.J., Skjemstad, J.O. 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131: 59–75. Walkley, A., & Black, I.A. (1934). An examination of the Degtjareff method for determining organic carbon in soils: effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63: 251-263. Wilding, L. (1985). Soil Spatial variability: Its documentation, accommodation, and implication to soil surveys. In Soil Spatial Variability. D.R. Nielson and J. Bouma (eds), Pudo, Wagenigen, the Netherlands, 166-194. Wischmeier, W. H. & Smith, D.D. (1978). Predicting Rainfall Erosion Losses, a Guide to Conservation Planning. Agriculture Handbook No. 537. U.S. Department of Agriculture, Washington, DC. Wold S., Sjostrom M. & Eriksson L. 2001. PLS-regression: a basic tool of chemometrics. Chemometrics and Intelligent Laboratoary Systems, 58: 109–130. Zhao, Z., Chow, T. L., Rees H. W., Yang, Q., Xing, Z., & Meng, F. (2009). Predict soil texture distributions using an artificial neural network model. Computers and Electronics Agrriculture, 65: 36-48. Zhu, Y. M., Lu X. X., & Zhou Y. (2007). Suspended sediment flux modeling with artificial neural network: An example of the Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphology, 84: 111–125. | ||
آمار تعداد مشاهده مقاله: 298 تعداد دریافت فایل اصل مقاله: 253 |