تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,514 |
تعداد مشاهده مقاله | 124,130,681 |
تعداد دریافت فایل اصل مقاله | 97,236,959 |
پاسخهای رشدی، فیزیولوژیکی و بیوشیمیایی گیاه فیسالیس ((Physalis peruviana L. به محلولپاشی سالیسیلیک اسید تحت تنش کم آبی | ||
علوم باغبانی ایران | ||
دوره 54، شماره 1، فروردین 1402، صفحه 67-83 اصل مقاله (1.44 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijhs.2023.329083.1964 | ||
نویسندگان | ||
سارا سیاه منصور؛ عبداله احتشام نیا* ؛ عبدالحسین رضایی نژاد | ||
گروه علوم باغبانی، دانشکدۀ کشاورزی، دانشگاه لرستان، خرم آباد، ایران | ||
چکیده | ||
کاربرد مواد تعدیل کننده در شرایط تنش کمآبی یک راهبرد بهینه و کم هزینه بوده و شناخت ویژگیهای مختلف گیاه در این شرایط منجر به اتخاذ شیوههای مدیریت تولید مناسب خواهد شد. هدف اصلی مطالعه حاضر بررسی نقش سالیسیلیک اسید (0، 5/0، 1 و 2 میلیمولار) در افزایش تحمل گیاه فیسالیس (Physalis peruviana L.) به تنش کمآبی (کنترل، 85 و 75 درصد ظرفیت مزرعهای) بود که بهصورت آزمایش فاکتوریل بر پایه طرح کاملا تصادفی با سه تکرار انجام شد. نتایج نشان داد که تنش کمآبی منجر به کاهش مقدار نسبی آب، تبادلات گازی و ویژگیهای روزنهای گیاه شد. همچنین تنش کمآبی، بر فعالیت آنزیمهای آنتیاکسیدانی، میزان نشت الکترولیت، مالوندیآلدئید اثر گذاشت و موجب افزایش این ویژگیها شد. کاربرد سالیسیلیک اسید اثرات منفی تنش کمآبی را کاهش داد. طبق نتایج به دست آمده از این پژوهش، در تنش کمآبی، طول و عرض روزنه کاهش و تراکم روزنه افزایش یافت. هدایت روزنهای، تعرق، کربن دیاکسید اتاقک زیر روزنه و نرخ فتوسنتز در سطوح آبیاری 85 و 75 درصد ظرفیت مزرعهای کاهش یافت. بالاترین نرخ فتوسنتز متعلق به محلولپاشی سالیسیلیک اسید در غلظتهای 1 و 2 میلیمولار بود. بنابراین جهت کشت گیاه فیسالیس در مناطق خشک و نیمهخشک، میتوان سطوح آبیاری 95 درصد و 85 درصد ظرفیت مزرعهای را به همراه کاربرد سالیسیلیک اسید در غلظتهای 1 و 2 میلیمولار پیشنهاد نمود و سطح آبیاری 75 درصد به علت تاثیر منفی بر پارامترهای اندازهگیری شده، توصیه نمیشود. | ||
کلیدواژهها | ||
آنزیمهای آنتیاکسیدانی؛ شاخص روزنهای؛ نشت الکترولیت؛ هدایت روزنهای | ||
مراجع | ||
Abdalla, M. M. & El-Khoshiban, N. H. (2007). The influence of water stress on growth, relative water content, photosynthetic pigments, some metabolic & hormonal contents of two (Triticum aestivum) cultivars. Journal of Applied Sciences Research, 3(12), 2062-2074. Afshara, R.K., Hashemi, M., DaCosta, M., Spargo, J. & Sadeghpour, A. (2016). Biochar application and drought Stress effects on physiological characteristics of Silybum marianum. Communication in Soil Science & Plant Analysis, 47(6), 743–752. Akhtar, S., Li. G., Andersen, M.N. & Liu, F. (2014). Biochar enhances yield and quality of tomato under reduced irrigation. Agricultural Water Management, 138, 37–44. Alvarez, S. & Sanchez-Blanco, M. J. (2013). Changes in growth rate, root morphology and water use efficiency of potted Callistemon citrinus plants in response to different levels of water deficit. Scientia Horticulturae, 156, 54–62. Ashraf, M. & Harris, P. J. C. (2013). Photosynthesis under stressful environments: an overview. Photosynthetica, 51(2), 163-190. Babaee, K., Amini Dehaghi, M., Modares Sanavi, A. & Jabbari, R. (2010). Water deficit effect on morphology, proline content and thymol percentage of Thyme (Thymus vulgaris L.). Iranian Journal of Medicinal and Aromatic Plants, 2(26), 239 -251. (In Persian) Buege, J. A. & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302-310. Chance, B. & Maehly, A. C. (1995). Assay of catalase and proxidase. Methods in Enzymology, Academic Press. New York, 2, 764-775. Chinnusamy, V. (2004). Use of genetic engineering and molecular biology approaches for crop improvement for stress environments. In: Abiotic stress: plant resistance through breeding and molecular approaches (Eds. Xiong, L. and Zhu, J. K.). Taylor and Francis Press, New York, 47-107. Dmitrieva, V.A., Tyutereva, E.V. & Voitsekhovskaja, O.V. (2020). Singlet oxygen in plants: Generation, detection, and signaling roles. International Journal of Molecular Sciences, 21, 3237. Flores, V. J., Fischer, G. & Sora, A. D. (2000). Produccion, poscosecha y exportacion de la uchuva (Physalis peruviana L.). Unibiblos, Universidad Nacional de Colombia, Bogotá. Ganjeali, A., Porsa, H. & Bagheri, A. (2011). Assessment of Iranian chickpea (Cicer arietinum L.) germplasms for drought tolerance. Agriculture Water Management, 98, 1477-1484. Gao-Bin, P., Dong-Ming, M. C., Jian-Lin, M., Lan-Qing, W., Hong, L., Guo-Feng, Y. & He-Chun, L. (2009). Salicylic acid activates artemisinin biosynthesis in (Artemisia annua L.). Plant Cell Report, 28, 1127-1135. Garcia-Garizabal, I., Causape, J. & Abrahao, R. (2011). Application of the irrigation land environmental evaluation tool for flood irrigation management and evaluation of water use. Catena, 87 (2), 260–267. Ghaderi, N., Nourmohammadi, S. & Javadi, T. (2015). Morpho-physiological responses of strawberry (Fragaria×ananassa) to exogenous salicylic acid application under drought stress. Journal of Agricultural Science & Technology, 17, 167- 178. Gupta, A., Rico-Medina, A. & Cano-Delgado, A.I. (2020). The physiology of plant responses to drought. Science, 368, 266 -269. Hamada, A. M. & Al-Hakimi, A. M. A. (2001). Salicylic acid versus salinity drought-induced stress on wheat seedlings. Rostlinna Vyroba, 47(10), 444-450. Hasanuzzaman, M., Bhuyan, M.B., Zulfiqar, F., Raza, A., Ohsin, S.M., Mahmud, J.A., Fujita, M. & otopoulos, V. (2020). Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants, 9, 681. Hayat, S., Hasan, S.A., Fariduddin, Q. & Ahmad, A. (2008). Growth of tomato (Lycopersicom esculentum) in response to salicylic acid under water stress. Journal of Plant Interactions, 3(4), 297 - 304. Hernandez, E. A. & Uddameri, V. (2010). Selecting agricultural best management practices for water conservation and quality improvements using atanassov’s intuitionistic fuzzy sets. Water Resource Management, 24, 4589–4612. Horvath, E., Szalai, G. & Janda, T. (2007). Induction of abiotic stress tolerance by salicylic acid signaling. Journal of Plant Growth Regulation, 26, 290 – 300. Jalalvand, A., Andalibi, B., Tavakoli, A. & Moradi, P. (2017). Investigation of the effects of salicylic acid and cycocel on the process of gas exchanges of Dracocephalum moldavica under drought stress conditions. Environmental stresses in agricultural sciences, 12 (3), 865-876. (In Persian) Jaleel, C. A., Manivannan, P., Wahid, A., Farooq, M., Al-Juburi, H. J., Somasundaram, R. & Panneerselvam, R. (2009a). Drought stress in plants: a review on morphological characteristics and pigments composition. International Journal of Agricultural and Biological Engineering, 11(1), 100-105. Jaleel, C. A., Riadh, K., Gopi, R., Manivannan, P., Ines, J., Al-Juburi, H. J., Chang-Xing, Z., Hong-Bo, S. & Panneerselvam, R. (2009b). Antioxidant defense responses: physiological plasticity in higher plants under abiotic constrains. Acta Physiologia Plantarum, 31, 427-436. Kadioglu, A., Saruhan, N., Saglam, A., Terzi, R. & Acet, T. (2011). Exogenous salicylic acid alleviates effects of long term drought stress and delays leaf rolling by inducing drought stress and delays leaf rolling by inducing antioxidant system. Plant Growth Regulation, 64, 27 -37. Kafi, M. & Rostami. M. (2008). Effect of drought stress in reproductive growth stage on yield and components yield and oil content three safflower cultivars in irrigation with salty water conditions. Iran Agricultural Research Journal, 5(1), 121-131. Kapoor, D., Bhardwaj, S., Landi, M., Sharma, A., Ramakrishnan, M. & Sharma, A. (2020). The impact of drought in plant metabolism: How to exploit tolerance mechanisms to increase crop production. Applied Sciences, 10, 5692. Kshavarz, H., Modares Sanavi, S. A. M., Zarin Kamr, F., Dolatabadian, A., Panahi, M. & Sadaj Asilan, K. (2012). Evolution effect salicylic acid foliar on same traits biochemical two (Brasica napus L.) under cool stress. Iranian Agricultural Science, 42, 723-734. Lutts, S., Kinet, J. M. & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Botany, 78(3), 389-398. Mac-Adam, J. W., Nelson, C. J. & Sharp, R. E. (1992). Peroxidase Activity in the leaf elongation zone of tall fescue I. Spatial distribution of ionically bound peroxidase activity in genotypes differing in length of the elongation zone. Plant physiology, 99 (3), 872-878. Mardani, H., Bayat, H. & Azizi, M. (2011). Effect of salicylic acid on morphological and physiological traits of cucumber under drought stress conditions. Journal of Horticultural Science, 25 (3), 320-326. (In Persian) Masoudi sedghiani, F. & Amini dehghi, M. (2016). Changes in some osmolytes and photosynthetic pigments accumulation and antioxidant enzymes activity in potatoes under water stress in greenhouse codition. Iranian journal of Horticultural Science and Technology, 17 (1), 29-38. (In Persian) Miura, k. & Tada, Y. (2014). Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in Plant Science, 5(4), 1-12. Nakano, V. & Asada, K. (1981). Hydrogen Peroxide is scavenged by ascorbate– specific peroxidase in spinach chloroplasts. Plant Cell Physiology, 22: 867-880. Noori, M., Motallebi Azar, A., Saidi, M., Panahandeh, J. & Zare Haghi, D. (2018). Evaluation of water deficiency impacts on antioxidant enzymes activity and lipid peroxidation in some tomato (Solanum lycopersicum L.) lines. Indian Journal Agricricultural reaserch, 52 (3), 228-235. Rahbarian, R., Khavari-nejad, R., Ganjeali, A., Bagheri, A. R. & Najafi, F. (2011). Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. Acta Biologica Cracoviensia-Series Botanica, 53, 47-56. Rashid, B., Husnain, T. & Riazuddin, S. (2014). Genomic approaches and abiotic stress tolerance in plants. In Emerging technologies and management of crop stress tolerance, (pp. 1-37). Academic Press. Ren, A. & Wang, Y. (2010). Effects of salt stress on stomatal differentiation and movement of Amaranth (Amaranthus tricolor L.) leaves. Acta Horticulturae Sinica, 37(3), 479-484. Ritchie S.W. & Hanson A. D. (1990). Leaf water content and gas exchange parameters of two wheat genotypes differing in drought resistance. Crop Science Journal, 30, 105-11. Roohani, L., Zamani, M. J. & Fotovat, R. (2013). Variation in stomatal size and density of barely genotypes under drought stress and normal conditions. Journal of Plant Research (Iranian Journal of Biology), 28 (5), 986-994. (In Persian) Sabokdast Nodehi, M. & Moradi, J. (2022). Study of the physiological and biochemical changes of common bean in response to foliar application of salcylic acid under drought stress conditions. Journal of Crop Breeding, 14 (42), 117-126. (In Persian). Santana Aires, E., Lopes Ferraz, A., Carvalho, B., Palla Teixeira, F., Ferrari Putti, F., Possas de Souza, E., Domingos Rodrigues, J. & Orika Ono, E. (2022). Foliar application of salicylic acid to mitigate water stress in tomato. Plants, 11, 1775. https://doi.org/10.3390/ plants11131775 Shemi, R., Wang, R., Gheith, E.S.M., Hussain, H.A., Hussain, S., Irfan, M. & Wang, L. (2021). Effects of salicylic acid, zinc and glycine betaine on morpho-physiological growth and yield of maize under drought stress. Scientific Reports, 11, 3195. Silva Lobato, A., Machado Barbosa, M. A., Abdullah Alsahli, A., Serrao da Silva, B. R. & Alvino Lima, E. J. (2020). Exogenous salicylic acid alleviates the negative impacts on production components, biomass and gas exchange in tomato plants under water deficit improving redox status and anatomical responses. Physiologia Plantarum, 1-16. Silva Rezende, R. A. L., Almendagna Rodrigues, F., Rodrigues Soares, J. D., Oliveira Silveira, H. R. & Gomes Dias, M. (2018). Salt stress and exogenous silicon influence physiological and anatomical features of in vitro-grown cape gooseberry. Ciencia Rural, 48 (1). https://doi.org/10.1590/0103-8478cr20170176 Taheri, S., Arghavani, M. & Mortazavi, S. (2017). Morphophysiologycal evaluation of Bermuda grass under salicylic acid treatment in water deficit conditions. Iranian Journal of Horticultural Science, 2, 431-442. (In Persian) Vicente‚ M.R. & Plasencia, J. (2011). Salicylic acid beyond defence: its role in plant growth and development. Journal of Experimental Botany, 62, 1–18. Yamori, M., Hikosaka, K. & Way, D. A. (2013). Temperature response of photosynthesis in C3, C4 and CAM plants: temperature acclimation and temperature adaptation. Photosynthesis Research, 13, 74- 76. Zlatev, Z. S. & Yardanov, I. T. (2004). Effect of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulgarian Journal of Physiology, 30, 3-18. | ||
آمار تعداد مشاهده مقاله: 189 تعداد دریافت فایل اصل مقاله: 263 |