تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,112,850 |
تعداد دریافت فایل اصل مقاله | 97,216,708 |
Estimation of Diffusion Coefficient of Benzene/Hexane Mixtures by Molecular Dynamics Simulation | ||
Journal of Chemical and Petroleum Engineering | ||
دوره 57، شماره 2، اسفند 2023، صفحه 199-207 اصل مقاله (724.49 K) | ||
نوع مقاله: Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/jchpe.2023.359908.1436 | ||
نویسندگان | ||
Morteza Moradi1؛ Hedayat Azizpour* 2؛ Mahdyeh Yavari2؛ Nafise Khoshnevisan2 | ||
1Department of Chemical Engineering, Faculty of Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran. | ||
2Surface Phenomenon and Liquid-Liquid Extraction Research Lab, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran. | ||
چکیده | ||
Molecular dynamics simulations have been performed in this study to predict the diffusion coefficient of benzene in hexane and vice versa by Materials Studio software. COMPASS force field has been applied to the system for optimization of the structures of benzene and hexane molecules. To model and calculate the van der Waals and electrostatic potential energies, a group-based summation method has been utilized. In order to predict the diffusion coefficient, firstly the simulation time and the force field have been optimized. In all simulations, Ewald and Atom-based summation methods were employed to calculate electrostatic and van der Waals potential energies. The optimized simulation times for the diffusion of benzene in hexane with the mole fraction of 0.2, and the diffusion coefficient of hexane in benzene with the mole fraction of 0.8, have been obtained to be 35 and 25 ps, respectively. In addition, the best force field to predict the diffusion coefficient has been identified to be “Pcff”. | ||
کلیدواژهها | ||
Benzene/Hexane Mixtures؛ Diffusion Coefficient؛ Molecular Dynamics Simulation؛ Materials Studio | ||
مراجع | ||
[1] Fei W, Bart H.-J. Predicting diffusivities in liquids by the group contribution method. Chemical Engineering and Processing: Process Intensification. 2001; 40(6): 531-535. [2] Amirjalayer S, Tafipolsky M, Schmid R. Molecular dynamics simulation of benzene diffusion in mof‐5: importance of lattice dynamics. Angewandte Chemie International Edition. 2007; 46(3): 463-466. [3] Winn E. B, The temperature dependence of the self-diffusion coefficients of argon, neon, nitrogen, oxygen, carbon dioxide, and methane. Physical review. 1950; 80(6): 1024. [4] Shvab I, Sadus R. J. Thermodynamic properties and diffusion of water+ methane binary mixtures. The Journal of Chemical Physics. 2014; 140(10): 104505. [5] Kimura Y, Kida Y, Matsushita Y, Yasaka Y, Ueno M, Takahashi K. Universality of viscosity dependence of translational diffusion coefficients of carbon monoxide, diphenylacetylene, and diphenylcyclopropenone in ionic liquids under various conditions. The Journal of Physical Chemistry B. 2015; 119(25): 8096-8103. [6] Bullerjahn J. T, Bülow S. V, Hummer G., Optimal estimates of self-diffusion coefficients from molecular dynamics simulations. The Journal of Chemical Physics. 2020; 153(2): 024116. [7] Moradi H, Azizpour H, Bahmanyar H, Mohammadi M, Akbari M. Prediction of methane diffusion coefficient in water using molecular dynamics simulation. Heliyon. 2020; 6(11): e05385. [8] Brüsewitz M, Weiss A. Pressure‐Temperature‐Dependence of Mass Density and Self‐Diffusion Coefficients in the Binary Liquid System n‐Hexane/Benzene. Berichte der Bunsengesellschaft für physikalische Chemie. 1990; 94(3): 386-391. [9] Caldwell C, Babb A. Diffusion in Ideal Binary Liquid Mixtures. The Journal of Physical Chemistry. 1956; 60(1): 51-56. [10] Harris K. R, Pua C. K,, Dunlop P. J. Mutual and tracer diffusion coefficients and frictional coefficients for the systems benzene-chlorobenzene, benzene-n-hexane, and benzene-n-heptane at 25. deg. The Journal of Physical Chemistry. 1970; 74(19): 3518-3529. [11] Guan Y, Chi M. H, Sun W. F, Chen Q. G, Wei X. L. Molecular dynamics simulations of molecular diffusion equilibrium and breakdown mechanism of oil-impregnated pressboard with water impurity. Polymers. 2018; 10(11): 1274. [12] Taheri Z, Nakhaeipour A. Studying of the adsorption and diffusion behaviors of methane on graphene oxide by molecular dynamics simulation. Journal of Molecular Modeling. 2021; 27(2): 1-8. [13] Akgerman A, Gainer J. L. Predicting gas-liquid diffusivities. Journal of Chemical and Engineering Data. 1972; 17(3): 372-377. [14] Newsome D, Coppens M. O. Molecular dynamics as a tool to study heterogeneity in zeolites–Effect of Na+ cations on diffusion of CO2 and N2 in Na-ZSM-5. Chemical Engineering Science. 2015; 121: 300-312. [15] Nalaparaju A, Khurana M, Farooq S, Karimi I. A, Jiang J. W. CO2 capture in cation-exchanged metal–organic frameworks: Holistic modeling from molecular simulation to process optimization. Chemical Engineering Science. 2015; 124: 70-78. [16] Orozco G. A, Lachet V, Mackie A. D. A molecular simulation study of aqueous solutions of amines and alkanolamines: mixture properties and structural analysis. Molecular Simulation. 2014; 40(1-3): 123-133. [17] Liu, X et al. Fick diffusion coefficients in ternary liquid systems from equilibrium molecular dynamics simulations. Industrial & engineering chemistry research. 2012; 51(30): 10247-10258. [18] Moradi H et al. Molecular dynamics simulation of H2S adsorption behavior on the surface of activated carbon. Inorganic Chemistry Communications. 2020; 118: 108048. [19] Moradi H, et al. Effect of Si/Al Ratio in the Faujasite Structure on Adsorption of Methane and Nitrogen: A Molecular Dynamics Study. Chemical Engineering & Technology. 2021; 44(7): 1221-1226. [20] Emamian M et al. Performance of molecular dynamics simulation for predicting of solvation free energy of neutral solutes in methanol. Chemical Product and Process Modeling. 2021. [21] Moradi, H., et al., Molecular dynamic simulation of carbon dioxide, methane, and nitrogen adsorption on Faujasite zeolite. Chinese Journal of Chemical Engineering. 2021. [22] Moradi H et al. Enhancement of supercritical carbon dioxide solubility models using molecular simulation data. Korean Journal of Chemical Engineering. 2022: 1-7. [23] Rani A. J, Thomas A, Joseph A. Inhibition of mild steel corrosion in HCl using aqueous and alcoholic extracts of Crotalaria Pallida–A combination of experimental, simulation and theoretical studies. Journal of Molecular Liquids. 2021; 334: 116515. [24] Pour S. B, Sardroodi J. J, Ebrahimzadeh A. R. The study of structure and interactions of glucose-based natural deep eutectic solvents by molecular dynamics simulation. Journal of Molecular Liquids. 2021. 334: 115956. [25] Zhao X, Jin H. Correlation for self-diffusion coefficients of H2, CH4, CO, O2 and CO2 in supercritical water from molecular dynamics simulation. Applied Thermal Engineering. 2020; 171: 114941. [26] Marry V et al. microscopic simulation of structure and dynamics of water and counterions in a monohydrated montmorillonite. The Journal of chemical physics. 2002; 117(7): 3454-3463. [27] Zeebe R. E. On the molecular diffusion coefficients of dissolved CO2, HCO3-, and CO32-and their dependence on isotopic mass. Geochimica et Cosmochimica Acta. 2011; 75(9): 2483-2498. | ||
آمار تعداد مشاهده مقاله: 368 تعداد دریافت فایل اصل مقاله: 724 |