- Abadeh, M., & Khosroshahi, M. (2021). Assessment and drought monitoring using Standardized Precipitation (SPI) and Standardized Precipitation Evapotranspiration (SPEI) Indices in Hormozgan province., Iranian Journal of Rangeland and Desert Research, 28(4), 718-732. (In Persian).
- Anwar, M. T., Hadikurniawati, W., Winarno, E., & Widiyatmoko, W. (2020, December). Performance Comparison of Data Mining Techniques for Rain Prediction Models in Indonesia. In 2020 3rd International Seminar on Research of Information Technology and Intelligent Systems (ISRITI) (pp. 83-88). IEEE.
- Bachmair, S., Stahl, K., Collins, K., Hannaford, J., Acreman, M., Svoboda, M., ... & Overton, I. C. (2016). Drought indicators revisited: the need for a wider consideration of environment and society, Wiley Interdisciplinary Reviews: Water, 3(4), 516-536.
- Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training algorithm for optimal margin classifiers, In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144-152).
- Breiman, L., Friedman, J. H., Olshen, R. A., & Stone, C. J. (2017). Classification and regression trees, Routledge.
- Dehbozorgi, M., Malekian, A., & Ehsani, A.H. (2015). Evaluation the efficiency of using artificial neural networks in predicting meteorological droughts in north-west of Iran. Journal of Geographical Sciences, 15(36), 139-156. (In Persian).
- Deo, R. C., Kisi, O., & Singh, V. P. (2017). Drought forecasting in eastern Australia using multivariate adaptive regression spline, least square support vector machine and M5Tree model, Atmospheric Research, 184, 149-175.
- Farahmand, A., & AghaKouchak, A. (2015). A generalized framework for deriving nonparametric standardized drought indicators, Advances in Water Resources, 76, 140-145.
- Ghorbani, K., Salari Jazi, M., & Abdolhosseini, M. (2015). Feasibility study of the prediction of annual drought based on drought conditions in the spring season. Iranian Journal of Irrigation & Drainage, 9(4), 636-645. (In Persian).
- Gringorten, I. I. (1963). A plotting rule for extreme probability paper, Journal of Geophysical Research, 68(3), 813-814.
- Haykin, S. (2004). Neural networks: A comprehensive foundation, 2, 41.
- Jahani, B., & Mohammadi, B. (2019). A comparison between the application of empirical and ANN methods for estimation of daily global solar radiation in Iran, Theoretical and Applied Climatology, 137(1), 1257-1269.
- Karami, A. (2010). Estimation of the critical clearing time using MLP and RBF neural networks, European Transactions on Electrical Power, 20(2), 206-217.
- Khoshhal Dastjerdi, J., & Hosseini, S.M. (2010). Application of artificial neural network in climatic elements simulation and drought cycle predication (case study: Isfahan province). Geography and Environmental Planning, 21(3 (39)), 107-120. (In Persian).
- Loukas, A., Vasiliades, L., & Tzabiras, J. (2007). Evaluation of climate change on drought impulses in Thessaly, Greece, European Water, 17(18), 17-28.
- Luenberger, D. G., & Ye, Y. (1984). Linear and nonlinear programming, (Vol. 2). Reading, MA: Addison-wesley.
- Malik, A., Kumar, A., Rai, P., & Kuriqi, A. (2021). Prediction of multi-scalar standardized precipitation index by using artificial intelligence and regression models, Climate, 9(2), 28.
- Mitchell, T. M. (1997). Machine learning. 1997. Burr Ridge, IL: McGraw Hill, 45(37), 870-877.
- Mokhtar, A., Jalali, M., He, H., Al-Ansari, N., Elbeltagi, A., Alsafadi, K., ... & Rodrigo-Comino, J. (2021). Estimation of SPEI meteorological drought using machine learning algorithms, IEEE Access, 9, 65503-65523.
- Mokhtarzad, M., Eskandari, F., Jamshidi Vanjani, N., & Arabasadi, A. (2017). Drought forecasting by ANN, ANFIS, and SVM and comparison of the models, Environmental Earth Sciences, 76(21), 1-10.
- Mozafari, Gh., Shafie, Sh., & Taghizade, Z. (2016). Evaluate the performance regression decision tree model in predicting drought (case study: synoptic station in Sanandaj). Journal of Natural Environment Hazards, 4(6), 1-19. (In Persian).
- Murad, S. H., & Salih, Y. M. M. (2020). Comparable Investigation for Rainfall Forecasting using Different Data Mining Approaches in Sulaymaniyah City in Iraq. International Journal of Advances in Life Science and Technology, 4(1), 11-18.
- Nikbakht Shahbazi, A., Zahraie, B., & Nasseri, M. (2012). Seasonal meteorological drought prediction using support vector machine. Journal of Water and Wastewater, 23(2), 73-85. (In Persian).
- Nivedika, M., Meghwal, M., & PV, R. (2021). Forecasting Drought via Soft-Computation Multi-layer Perceptron Artificial Intelligence Model, International Research Journal on Advanced Science Hub, 3, 30-36.
- Quinlan, J.R. (1992) Learning with Continuous Classes, Proceedings of Australian Joint Conference on Artificial Intelligence, Hobart 16-18 November 1992, 343-348.
- Roodposhti, M. S., Safarrad, T., & Shahabi, H. (2017). Drought sensitivity mapping using two one-class support vector machine algorithms, Atmospheric Research, 193, 73-82.
- Smola, A. J. (1996). Regression estimation with support vector learning machines, Doctoral dissertation, Master’s thesis, Technische Universität München.
- Vapnik Vladimir, N. (2000). The nature of statistical learning theory, Second Edition. Springer.
- Wu, J. (2018, August). Co-Evolution Algorithm for Parameter Optimization of RBF Neural Networks for Rainfall-Runoff Forecasting, In International Conference on Intelligent Computing (pp. 195-206). Springer, Cham.
- Zainudin, S., Jasim, D. S., & Bakar, A. A. (2016). Comparative analysis of data mining techniques for Malaysian rainfall prediction. International Journal on Advanced Science Engineering Information Technology, 6(6), 1148-1153.
- Zhang, Y., Yang, H., Cui, H., & Chen, Q. (2020). Comparison of the ability of ARIMA, WNN and SVM models for drought forecasting in the Sanjiang Plain, China, Natural Resources Research, 29(2), 1447-1464.
|