تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,092,128 |
تعداد دریافت فایل اصل مقاله | 97,196,014 |
تاثیر کنجاله سویای عملآوری شده با اسید سیتریک بر عملکرد، قابلیت هضم مواد مغذی و جمعیت میکروبی در جوجههای گوشتی تغذیه شده با سطوح مختلف پروتئین | ||
علوم دامی ایران | ||
دوره 55، شماره 2، تیر 1403، صفحه 193-210 اصل مقاله (1.27 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijas.2022.345444.653895 | ||
نویسندگان | ||
معصومه نوروزی1؛ منصور رضایی* 2؛ محمد کاظمی فرد1 | ||
1گروه علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران. | ||
2گروه علوم دامی، دانشگاه علوم کشاورزی و منابع طبیعی ساری، ساری، ایران | ||
چکیده | ||
این پژوهش به منظور مطالعه کنجاله سویای فرآوری شده با اسید سیتریک بر عملکرد رشد، ریختشناسی روده، جمعیت میکروبی روده ، فعالیت آنزیمهای هضمی و قابلیت هضم مواد مغذی در جوجههای گوشتی تغذیه شده با سطوح مختلف پروتئین انجام شد. تعداد 300 قطعه جوجه گوشتی نر سویه راس 308 با 6 گروه آزمایشی و 5 تکرار در یک دوره 42 روزه استفاده شدند. آزمایش در قالب طرح کاملا تصادفی با آرایش فاکتوریل 3 ×2 شامل دو نوع کنجاله سویای خام و فرآوری شده با اسید سیتریک 50/0 درصد و سه سطح احتیاجات پروتئین 100، 95 و 90 درصد بود. نتایج آزمایش نشان داد که کنجاله سویای فرآوری شده سبب بهبود ضریب تبدیل غذایی در مقایسه با کنجاله سویای خام شد (P <0.05). کاهش سطح پروتئین جیره تا 90 درصد احتیاجات، سبب کاهش عملکرد رشد جوجههای گوشتی در مقایسه با سطوح 95 و 100 درصد احتیاجات شد (P <0.05). طول پرزهای روده در جوجههای گوشتی تغذیه شده با کنجاله سویای فرآوری شده بیشتر از کنجاله سویای خام بود (P <0.05). کاهش سطح پروتئین جیره سبب کاهش معنیدار طول پرز، نسبت طول پرز به عمق کریپت و مساحت پرز در جوجههای گوشتی شد (P <0.05). فرآوری اسیدی کنجاله سویا سبب بهبود قابلیت هضم پروتئین و فعالیت آنزیمهای گوارشی پروتئاز و آمیلاز شد (P <0.05). همچنین با کاهش سطح نیاز پروتئینی جیره (90 درصد احتیاجات) قابلیت هضم پروتئین و فعالیت آنزیمهای گوارشی پروتئاز و آمیلاز کاهش معنیداری را نشان داد (P <0.05). بر اساس نتایج این تحقیق استفاده از کنجاله سویای فرآوری شده با اسید سیتریک در مقایسه با کنجاله سویای خام سبب افزایش عملکرد رشد، جوجههای گوشتی شد. کاهش سطح پروتئین تا 95 درصد احتیاجات در جیرههای حاوی کنجاله سویای فرآوری شده با اسید سیتریک 50/0 درصد تاثیر منفی بر عملکرد رشد جوجههای گوشتی نداشت. | ||
کلیدواژهها | ||
پرنده؛ جیره؛ ریختشناسی روده؛ فرآوری اسیدی؛ فعالیت آنزیم | ||
مراجع | ||
Afsharmanesh, M., & Pourreza, J. (2005). Effects of calcium, citric acid, ascorbic acid, vitamin D3 on the efficacy of microbial phytase in broiler starters fed wheat-based diets I. Performance, bone mineralization and ileal digestibility. International Journal of Poultry Science, 4(6), 418-427. Aftab, U., Ashraf, M., & Jiang, Z. (2006). Low protein diets for broilers. World's Poultry Science Journal, 62, 688-701. Ahsan, F., Imran, M., Gilani, S.A., Bashir, S., Khan, A.A., Khalil, A.A., Shah, F.-u.H., & Mughal, M.H. (2018). Effects of dietary soy and its constituents on human health: A review. Biomedical Journal, 1, 6. Aletor, V.A., Hamid, I.I., Niess, E., & Pfeffer, E. (2000). Low‐protein amino acid‐supplemented diets in broiler chickens: effects on performance, carcass characteristics, whole‐body composition and efficiencies of nutrient utilisation. Journal of the Science of Food and Agriculture, 80, 547-554. Ao, T., Cantor, A., Pescatore, A., Ford, M., Pierce, J., & Dawson, K. (2009). Effect of enzyme supplementation and acidification of diets on nutrient digestibility and growth performance of broiler chicks. Poultry Science, 88, 111-117. AOAC. (2002). Association of official analytical chemists. Official methods of analysis. 17th ed. AOAC, Washington, DC. Awad, E.A., Zulkifli, I., Farjam, A.S., & Chwen, L.T. (2014). Amino acids fortification of low-protein diet for broilers under tropical climate. 2. Nonessential amino acids and increasing essential amino acids. Italian Journal of Animal Science, 13, 3297. Belloir, P., Méda, B., Lambert, W., Corrent, E., Juin, H., Lessire, M., & Tesseraud, S. (2017). Reducing the CP content in broiler feeds: impact on animal performance, meat quality and nitrogen utilization. Animal, 11, 1881-1889. Biggs, P., & Parsons, C. (2008). The effects of several organic acids on growth performance, nutrient digestibilities, and cecal microbial populations in young chicks. Poultry Science, 87, 2581-2589. Choct, M., Dersjant-Li, Y., McLeish, J., & Peisker, M. (2010). Soy oligosaccharides and soluble non-starch polysaccharides: a review of digestion, nutritive and anti-nutritive effects in pigs and poultry. Asian-Australasian Journal of Animal Science, 23, 1386-1398. Chrystal, P.V., Moss, A.F., Khoddami, A., Naranjo, V.D., Selle, P.H., & Liu, S.Y. (2020). Effects of reduced crude protein levels, dietary electrolyte balance, and energy density on the performance of broiler chickens offered maize-based diets with evaluations of starch, protein, and amino acid metabolism. Poultry Science, 99, 1421-1431. Dean, D., Bidner, T., & Southern, L. (2006). Glycine supplementation to low protein, amino acid-supplemented diets supports optimal performance of broiler chicks. Poultry Science 85, 288-296. De Cesare, A., do Valle, I. F., Sala, C., Sirri, F., Astolfi, A., Castellani, G., & Manfreda, G. 2019. Effect of a low protein diet on chicken ceca microbiome and productive performances. Poultry science, 98(9), 3963-3976. Ding, X., Li, D., Li, Z., Wang, J., Zeng, Q., Bai, S., Su, Z., & Zhang, K. (2016). Effects of dietary crude protein levels and exogenous protease on performance, nutrient digestibility, trypsin activity and intestinal morphology in broilers. Livestock Science, 193, 26-31. Drew, M., Syed, N., Goldade, B., Laarveld, B., & Van Kessel, A. (2004). Effects of dietary protein source and level on intestinal populations of Clostridium perfringens in broiler chickens. Poultry Science, 83, 414-420. Eftekhari, A., Rezaeipour, V., & Abdullahpour, R. (2015). Effects of acidified drinking water on performance, carcass, immune response, jejunum morphology, and microbiota activity of broiler chickens fed diets containing graded levels of threonine. Livestock Science, 180, 158-163. Emami, N.K., Daneshmand, A., Naeini, S.Z., Graystone, E., & Broom, L. (2017). Effects of commercial organic acid blends on male broilers challenged with E. coli K88: Performance, microbiology, intestinal morphology, and immune response. Poultry Science, 96, 3254-3263. Fenton, T., & Fenton, M. (1979). An improved procedure for the determination of chromic oxide in feed and feces. Canadian Journal of Animal Science 59, 631-634. Garcia, V., Catala-Gregori, P., Hernandez, F., Megias, M., & Madrid, J. (2007). Effect of formic acid and plant extracts on growth, nutrient digestibility, intestine mucosa morphology, and meat yield of broilers. Journal of Applied Poultry Research, 16, 555-562. Ghazala, R., Tabinda, A., & Yasar, A. (2011). Growth response of juvenile grass carp (Ctenopharyngodon idella) fed isocaloric diets with variable protein levels. Journal of Animal and Plant Science , 21, 850-856. Giesting, D., & Easter, R. (1985). Response of starter pigs to supplementation of corn-soybean meal diets with organic acids. Journal of Animal Science, 60, 1288-1294. Guo, S., Zhang, Y., Cheng, Q., Xv, J., Hou, Y., Wu, X., Du, E., & Ding, B. (2020). Partial substitution of fermented soybean meal for soybean meal influences the carcass traits and meat quality of broiler chickens. Animals, 10, 225. Huang, L., & Xu, Y. (2018). Effective reduction of antinutritional factors in soybean meal by acetic acid‐catalyzed processing. Journal of Food Processing and Preservation, 42, e13775. Jazi, V., Mohebodini, H., Ashayerizadeh, A., Shabani, A., & Barekatain, R. (2019). Fermented soybean meal ameliorates Salmonella Typhimurium infection in young broiler chickens. Poultry science, 98, 5648-5660. Khan, S.H., & Iqbal, J. (2016). Recent advances in the role of organic acids in poultry nutrition. Journal of Applied Animal Research, 44, 359-369. Law, F.L., Zulkifli, I., Soleimani, A.F., Liang, J.B., & Awad, E.A. (2018). The effects of low-protein diets and protease supplementation on broiler chickens in a hot and humid tropical environment. Asian-Australasian Journal of Animal Science, 31, 1291. Lynn, K.R & N.A. Clevette-Radford. (1984). Purification and characterization of hevin, a serin protease from Heveabrazilliensis. Biochemical Journal, 2, 963–964. Mukherjee, R., Chakraborty, R., & Dutta, A. (2016). Role of fermentation in improving nutritional quality of soybean meal. A review. Asian-Australasian journal of animal science, 29, 1523. Norozi, M., Rezaei, M., & Kazemifard, M. (2022). Effect of different acid processing methodologies on the nutritional value and reduction of anti‐nutrients in soybean meal. Journal of Food processing and Preservation, 46(1), e16205. Ospina-Rojas, I., Murakami, A., Duarte, C., Eyng, C., Oliveira, C., & Janeiro, V. (2014). Valine, isoleucine, arginine and glycine supplementation of low-protein diets for broiler chickens during the starter and grower phases. British Poultry Science, 55, 766-773. Palacios, M., Easter, R., Soltwedel, K., Parsons, C., Douglas, M., Hymowitz, T., & Pettigrew, J. (2004). Effect of soybean variety and processing on growth performance of young chicks and pigs. Journal of Animal Science, 82, 1108-1114. Roofchaei, A., Rezaeipour, V., Vatandour, S., & Zaefarian, F. (2019). Influence of dietary carbohydrases, individually or in combination with phytase or an acidifier, on performance, gut morphology and microbial population in broiler chickens fed a wheat-based diet. Animal Nutrition, 5, 63-67. Sakamoto, K., Hirose, H., Onizuka, A., Hayashi, M., Futamura, N., Kawamura, Y., & Ezaki, T. (2000). Quantitative study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats. Journal of Surgical Research, 94, 99-106. Santos, W.M., Costa, L.S., López‐Olmeda, J.F., Costa, N.C.S., Santos, F.A., Gamarano, P.G., Silva, W.S., Rosa, P.V., Luz, R.K., & Ribeiro, P.A. (2020). Effects of dietary protein levels on activities of protease and expression of ingestion and protein digestion‐related genes in Nile tilapia juveniles. Aquaculture Research, 51, 2973-2984. SAS Institute. 2008. SAS/STAT users guide: statistics. Version 9.2. Ed. SAS institute. Inc Cary, Nc. USA. Somogyi, M. (1960). Modifications of two methods for the assay of amylase. Clinical Chemistry, 6: 23–35. Sonoyama, K., Kiriyama, S., & Niki, R. (1994). Effect of dietary protein level on intestinal aminopeptidase activity and mRNA level in rats. The Journal of Nutritional Biochemistry, 5, 291-297. Soumeh, E., Mohebodini, H., Toghyani, M., Shabani, A., Ashayerizadeh, A., & Jazi, V. (2019). Synergistic effects of fermented soybean meal and mannan-oligosaccharide on growth performance, digestive functions, and hepatic gene expression in broiler chickens. Poultry Science, 98, 6797-6807. Tietz N.W & E.A. Fiereck. (1966). A specific method for serum lipase determination. Clinica Chemical Acta, 13: 352–358. Trzcinski, A.P., & Stuckey, D.C. (2015). Contribution of acetic acid to the hydrolysis of lignocellulosic biomass under abiotic conditions. Bioresource Technology 185, 441-444.
Valencia, D., Serrano, M., Lázaro, R., Latorre, M., & Mateos, G. (2008). Influence of micronization (fine grinding) of soya bean meal and fullfat soya bean on productive performance and digestive traits in young pigs. Animal Feed Science and Technology, 147, 340-356. Van Harn, J., Dijkslag, M., & Van Krimpen, M. (2019). Effect of low protein diets supplemented with free amino acids on growth performance, slaughter yield, litter quality, and footpad lesions of male broilers. Poultry Science, 98, 4868-4877. Wang, W.-W., Wang, J., Wu, S.-G., Zhang, H.-J., & Qi, G.H. (2020). Response of broilers to gradual dietary protein reduction with or without an adequate glycine plus serine level. Italian Journal of Animal Science, 19, 127-136. Yousaf, M., Goodarzi Boroojeni, F., Vahjen, W., Männer, K., Hafeez, A., Ur-Rehman, H., Keller, S., Peris, S., & Zentek, J. (2017). Encapsulated benzoic acid supplementation in broiler diets influences gut bacterial composition and activity. British Poultry Science, 58, 122-131. Yuan, L., Chang, J., Yin, Q., Lu, M., Di, Y., Wang, P., Wang, Z., Wang, E., & Lu, F. (2017). Fermented soybean meal improves the growth performance, nutrient digestibility, and microbial flora in piglets. Animal Nutrition, 3, 19-24.
Zahir, M., Fogliano, V., & Capuano, E. (2020). Effect of soybean processing on cell wall porosity and protein digestibility. Food and function, 11, 285-296. Zhang, H., Zhou, X., Xu, Y., & Yu, S. (2017). Production of xylooligosaccharides from waste xylan, obtained from viscose fiber processing, by selective hydrolysis using concentrated acetic acid. Journal of Wood Chemistry and Technology, 37, 1-9. Zhang, J.-X., Guo, L.-Y., Feng, L., Jiang, W.-D., Kuang, S.-Y., Liu, Y., Hu, K., Jiang, J., Li, S.-H., & Tang, L. (2013). Soybean β-conglycinin induces inflammation and oxidation and causes dysfunction of intestinal digestion and absorption in fish. PLoS One, 8, e58115. Zhao, F., Hou, S., Zhang, H., & Zhang, Z. (2007). Effects of dietary metabolizable energy and crude protein content on the activities of digestive enzymes in jejunal fluid of Peking ducks. Poultry Science, 86, 1690-1695. | ||
آمار تعداد مشاهده مقاله: 464 تعداد دریافت فایل اصل مقاله: 367 |