تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,091,209 |
تعداد دریافت فایل اصل مقاله | 97,195,152 |
تأثیر تلقیح باکتریهای محرک رشد گیاه بر ویژگیهای خاک، جذب عناصر غذایی و رشد فلفل دلمهای (Capsicum annum L.) | ||
تحقیقات آب و خاک ایران | ||
دوره 54، شماره 1، فروردین 1402، صفحه 1-13 اصل مقاله (1.29 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.352612.669412 | ||
نویسندگان | ||
محمدامین خدابین1؛ صاحب سودایی مشایی* 2؛ رحیم برزگر3؛ مسعود قاسمی قهساره4 | ||
1دانشجوی کارشناسی ارشد، گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهرکرد، چهارمحال و بختیاری، ایران | ||
2گروه علوم و مهندسی خاک، دانشکده کشاورزی، دانشگاه شهرکرد، شهرکرد، ایران | ||
3دانشگاه شهرکرد | ||
4استادیار گروه علوم باغبانی، دانشکده کشاورزی، دانشگاه شهرکرد، چهارمحال و بختیاری، ایران. | ||
چکیده | ||
به منظور بررسی اثر تلقیح باکتریهای محرک رشد بر ویژگیهای خاک، جذب عناصر غذایی و رشد فلفل دلمهای، پژوهشی در قالب طرح بلوک کامل تصادفی با پنج گونه از باکتریهای محرک رشد (Bacillus subtilis ، Azospirillum lipoferum، Azotobacter chroococcum، Enterobacter cloacae و Pseudomonas putida) با سه تکرار در سال 1400در گلخانه گندمزار اصفهان انجام شد. خصوصیات شیمیایی و زیستی خاک، جذب نیتروژن، فسفر و پتاسیم و خصوصیات رشد و عملکرد میوه بعد از برداشت بررسی شدند. نتایج نشان داد که افزودن باکتریهای محرک رشد بر برخی از ویژگیهای خاک و رشد فلفل دلمهای تاثیر میگذارد. تیمارها از نظر نیتروژن کل، فسفر و پتاسیم قابل جذب خاک، تنفس و جمعیت میکروبی محیط ریشه، جذب نیتروژن و پتاسیم، عملکرد و تعداد میوه (p≤0.01) تفاوت معنیداری نشان دادند. بهترین میزان نیتروژن خاک (44/0 درصد)، میزان جذب نیتروژن (8/28 گرم بر مترمربع) و وزن خشک اندام هوایی (0/565 گرم بر مترمربع) در تیمار باکتری Azotobacter chroococcum مشاهده شد. بیشترین جمعیت میکروبی ریزوسفر (cfu.g-1106×6/7) و نسبت جمعیت محیط ریزوسفر به غیرریزوسفری (R/S) (9/47) در تیمار Enterobacter cloacae بود. وزن تر و وزن خشک اندام هوایی گیاه در تیمار Azospirillum lipoferum بیشتر بود که با تیمار Azotobacter chroococcum و Enterobacter cloacae تفاوت معنیداری نداشت. در تیمار Enterobacter cloacae، عملکرد (8/18 کیلوگرم بر مترمربع) و تعداد میوه (8/65 در مترمربع) بیشتر بود. مصرف زادمایه باکتریهای Enterobacter cloacae، Azotobacter chroococcum و Azospirillum lipoferum بر شاخصهای رشدی فلفل بیشتر بود که میتوان کاربرد این باکتریها را به عنوان کود زیستی در پرورش فلفل دلمهای توصیه نمود. | ||
کلیدواژهها | ||
ازتوباکتر؛ انتروباکتر؛ جذب نیتروژن؛ خصوصیات زیستی خاک؛ عملکرد | ||
مراجع | ||
Ademola, O. & Agele, OS. (2015). Effects of nutrient sources and variety on the growth and yield of three cultivars of pepper (Capsicum annuum L.) in Southwestern Nigeria. New York Science Journal. 8(10):21-29. Adesemoye, AO. & Egamberdieva, D. (2013). Beneficial effects of plant growth- promoting rhizobacteria on improved crop production: Prospects for Developing Economies. Springer-Verlag Berlin Heidelberg, 45-63. Akram, NA. & Ashraf, M. (2013). Regulation in plant stress tolerance by a potential plant growth regulator, 5-aminolevulinic acid (ALA). Journal of Plant Growth Regulation, 32, 663–679. Alef, K. & Nannipieri, P. (1995). Methods in Applied Soil Microbiology and Biochemistry. Academic Press. pp. 214–216. Ali-Ehyayi, M. & Behbahanizadeh, AA. (1993). Description of soil chemical analysis methods. Technical Journal No. 893, Soil and Water Research Institute, Tehran, 129 p. (InPersian). Almadhoun, HR. (2021). Bell pepper classification using deep learning. International Journal of Academic Engineering Research, 5(1): 75-79. Ashmawi, AE., Salem, GM., Ghazal, MF. & El-Emshaty, A. (2022). Effect of Some indigenous Bacilli and Cyanobacteria Strains inoculants on Growth Characteristics and Productivity of Sweet Pepper (Capsicum frutescens). Australian Journal of Basic and Applied Sciences, 16(6): 1-11. DOI: 10.22587/ajbas.2022.16.6.1. Bagyaraj, DJ. (1992). Vesicular-arbuscular mycorrhiza: application in agriculture. In: Norris, JR., Read, DJ., Varma, AK. (Eds.), Methods in Microbiology. Academic Press, London, pp. 819e833. Bakhshande, E., Rahimian, H., Pirdashti, H. & Nematzadeh GA. (2014). Phosphate solubilization potentail and modeling of stress tolerace of rhizobacteria from rice paddy soil in northen Iran. World Journal of Microbiology and Biotechnology, 30: 2437-2447. Bidondo, LF., Silvani, V., Colombo, R., Pérgola, M., Bompadre, J. & Godeas, A. (2011). Pre-symbiotic and symbiotic interactions between Glomus intraradices and two Paenibacillus species isolated from AM propagules. In vitro and in vivo assays with soybean (AG043RG) as plant host. Soil Biology and Biochemistry, 43:1866-1872. Bremner, JM. & Mulvaney, CS. (1982). Nitrogen total. In: Page A.L. Miller R.H. and Keeney D.R. (Eds). Methods of Soil Analysis, Part 2. Chemical and microbiological properties. American Society of Agronomy. pp. 595–624. Chittora, D., Meena, M., Barupal, T., Swapnil, P. & Sharma, K. (2020). Cyanobacteria as a source of biofertilizers for sustainable agriculture, Biochemistry and biophysics reports, 22:100737. Emami, A. (1996). Plant analysis methods, Soil and Water Research Organization. Publication 982. Vol. 1: 128. (InPersian). Enayatizamir, N., Noruzi-masir, M. & Ghadamkhanii, A. (2020). Effect of plant growth promoting bacteria on some biological indicators and soil organic carbon forms under wheat cultivation. Journal of Water and Soil Science, 23 (4):171-181 (InPersian). Gupta, S., Kaushal, R., Sood, G., Bhardwaj, S. & Chauhan, A. (2021). Indigenous Plant Growth Promoting Rhizobacteria and Chemical Fertilizers: Impact on Soil Health and Productivity of Capsicum (Capsicum Annuum L.) in North Western Himalayan Region, Communications in Soil Science and Plant Analysis, 52(9): 948-963. Homayi, M. (2002). Plants reaction to salinity. National Irrigation and Drainage Committee of Iran, Tehran, 97 p. (InPersian). Jagnow, G., Hoeflich G. & Hoffmann, K.H. (1991). Inoculation of non-symbiotic rhizosphere bacteria: Possibilities of increasing and stabilizing yield. Angewandte Bottani,. 65: 97-126. Ju, W., Jin, X., Liu, L., Shen, G., Zhao, W., Duan, C. & Fang, L., (2020). Rhizobacteria inoculation benefits nutrient availability for phytostabilization in copper contaminated soil: drivers from bacterial community structures in rhizosphere. Applied Soil Ecology, 150:103-150. Katznelson, H. (1946). The rhizosphere effect of mangels on certain groups of microorganisms. Soil Science, 62: 343-354. Kumar, A., Kumar, J. & Ram, B. (2007). Effect of inorganic and bio-fertilizers on growth, yield and quality of tomato (Lycopersicon esculentum Mill.). Progressive Agriculture, 7 (1and2):151-152. Kumari, S., Bharat, N., Thakur, A. & Kaushal, R. (2019). Effect of PGPR and BCA on Quality Seed Production of Bell Pepper (Capsicum annuum L.) under Open Field Conditions. International Journal of Economic Plants, 6(4):172-180. Mahato, P., Badoni, A. & Chauhan, JS. (2009). Effect of Azotobacter and nitrogen on seed germination and early seedling growth in tomato. Researcher, 1(4), http://www.sciencepub.net, sciencepub@gmail.com. Mahmoudzadeh, M.; Sedqiani, M. & Askari Lejair, h. (2016). Effect of plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi on growth characteristics and concentration of macronutrients in peppermint (Mentha pipperita L.) under greenhouse conditions. Journal of Soil and Plant Interactions, 6 (4) :155-168. (InPersian). Mohamed, EA., Farag, AG. & Youssef, SA. (2018). Phosphate solubilization by Bacillus subtilis and Serratia marcescens isolated from tomato plant rhizosphere. Journal of Environmental Protection, 9 (03):266. Naiji, M. & Souri, MK. (2018). Nutritional value and mineral concentrations of sweet basil under organic compared to chemical fertilization. Acta Scientiarum Polonorum: Hortorum Cultus (Ogrodnictwo), 17(2), 167-175. Nelson, DW. & Sommers, LE. (1996). Carbon, organic carbon and organic matter. In: Sparks, DL. (ed.) Methods of Soil Analysis. SSSA, Madison. pp. 961-1010. Pandey, A., Palni, L.M. (2007). The rhizosphere effect in trees of the indian central Himalaya with special reference to altitude. Applied Ecology and Environmental Research, 5(1): 93-102. Pinton, R., Varanini, Z. & Nannipieri, P. (2001): The Rhizosphere. Marcel Dekker, Inc. New York, Basel. Qessaoui, R., Bouharroud, R., Furze, JN., Aalaoui, ME., Akroud, H., Amarraque, A., Vaerenbergh, JV., Tahzima, R., Mayad, EH. & Chebli, B. (2019). Applications of new rhizobacteria Pseudomonas isolates in agroecology via fundamental processes complementing plant growth. Scientific Reports, 9:12832. doi:10.1038/s41598-019-49216-8. Rhoades, JD. (1996). Salinity: Electrical conductivity and total dissolved solids. In: Sparks, D.L. (ed.) Methods of Soil Analysis. SSSA, Madison. pp. 417-435. Ruiz JL. & Sanjuan, MCS. (2022). The use of plant growth promoting bacteria for biofertigation; effects on concentrations of nutrients in inoculated aqueous vermicompost extract and on the yield and quality of tomatoes. Biological Agriculture and Horticulture, 38(3): 145–161. https://doi.org/10.1080/01448765.2021.2010596. Sadeghi, S, Heidari, G. & Sohrabi, Y. (2015). Effect of biological fertilizer and fertilization management on some growth indices of two maize varieties. Journal of Agricultural Science and Sustainable Production, 25(3): 43-60. (InPersian). Safirzadeh, S., Chorom, M. & Enayatizamir, N. (2019). Effect of Plant Growth-Promoting Rhizobacteria (Enterobacter cloacae) on Uptake and Uptake Efficiency of Potassium in Sugarcane (Saccharum officinarum L.). Iranian Journal of Soil and Water Research, 50(7): 1689-1699. (InPersian). Sajedi, N., Madani, H., & Naderi, A. (2011). Effect of microelements and selenium on superoxide dismutase enzyme, malondialdehyde activity and grain yield maize (Zea mays L.) under water deficit stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39, 153–159. Sarikhani, M.R., Khoshru, B. & Greiner, R. (2019). Isolation and identifcation of temperature tolerant phosphate solubilizing bacteria as a potential microbial fertilizer. World Journal of Microbiology and Biotechnology, 35:126. Seyed-Sharifi, R. & Khavazi, K. (2011). Effect of seed inoculation with plant growth promoting rhizobacteria (PGPR) on germination components and seedling growth of corn (Zea mays L.). Journal of Agroecology(Quarterly), 4(3):513-506. (InPersian). Sharma, M., Sharma, V., Delta, AK. & Kaushik, P. (2022). Rhizophagus irregularis and nitrogen Fixing Azotobacter with a reduced rate of chemical fertilizer application enhances pepper growth along with fruits biochemical and mineral composition. Sustainability, 14, 5653. https://doi.org/10.3390/su14095653. Spence, C. & Bais, H. (2015). Role of plant growth regulators as chemical signals in plant-microbe interactions: a double edged sword. Current Opinion Plant Biology, 27:52–58. Thangavelu, M. & Arumugam, P. (2019). Influence of an arbuscular mycorrhizal fungus and phosphate-solubilizing bacterium inoculation at stem cutting stage on P uptake and growth of Impatiens walleriana plants in an unsterile field soil. Journal of Horticultural Research, 27(2): 11–22. Thomas, GW. (1996). Soil pH and soil acidity. In: Sparks, D.L. (ed.) Methods of Soil Analysis. SSSA, Madison. pp. 475-490. Vejan, P., Abdullah, R., Khadiran, T., Ismail, S., Nasrulha, Q. & Boyce A. (2016). Role of plant growth promoting rhizobacteria in agricultural sustainability- a review. Molecules, 21 (5):573. Wang, J., Li, R., Zhang, H., Wei, G. & Li, Z. (2020). Beneficial bacteria activate nutrients and promote wheat growth under conditions of reduced fertilizer application. BMC Microbiology, 20. doi:10.1186/s12866-020-1708-z. Zhang, L., Jing, Y., Xiang, Y., Zhang, R. & Luc, H. (2018). Responses of soil microbial community structure changes and activities to biochar addition: a meta-analysis. Science of the Total Environment, 643, 926–935. | ||
آمار تعداد مشاهده مقاله: 329 تعداد دریافت فایل اصل مقاله: 381 |