تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,124,843 |
تعداد دریافت فایل اصل مقاله | 97,233,408 |
Simulating of Clogging Process in the Leachate Collection System in the Municipal Solid Waste Landfill using Column Experiments | ||
Pollution | ||
دوره 9، شماره 3، مهر 2023، صفحه 1281-1294 اصل مقاله (2.61 M) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2023.355280.1785 | ||
نویسندگان | ||
Zeynab Golhosseini1؛ Mahdi Jalili Ghazizade* 1؛ Edwin Safari2 | ||
1Department of Environmental Technologies, Environmental Sciences Research Institute (ESRI), Shahid Beheshti University (SBU), Tehran 1983969411, Iran | ||
2University of Toronto Scarborough, 1265 Military Trail, Toronto, ON. Canada | ||
چکیده | ||
Clogging of the drainage layer is the main reason for the inefficiency and failure of the leachate collection system in municipal solid waste (MSW) landfills. One of the most important challenges in the design and operation of landfills is to identify the factors affecting the drainage layer clogging and the extent of their influence especially in the real scale. In this study, five experimental columns were designed to investigate the effective factors on the clogging of the drainage system in the MSW landfills, making it possible to measure the effect of different parameters on the drainage layer clogging through simulating the real conditions. The designed columns are capable to apply the boundary conditions of the MSW landfill including temperature, pressure, and leachate recirculation as well as measuring the permeability of drainage layer. High strength real leachate recirculated in the experimental columns to monitor the degree of drainage layer clogging through the regular measurement of permeability in the different columns. The results showed hydraulic conductivity of the drainage layer decreased between 20 to 50 percent in different samples over time. Although the particle size of drainage materials directly influences the reduction of hydraulic conductivity, the common concentration of calcium carbonate in the materials of the drainage layer does not considerably affect this issue. Formation of biofilm in the drainage layer was observed through scanning electron microscope (SEM) and visual inspection in all columns indicating the proper performance of clogging process simulator which is designed and developed in this research. | ||
کلیدواژهها | ||
Drainage layer clogging؛ High strength leachate؛ Landfill simulation؛ Permeability | ||
مراجع | ||
Armstrong, M. D. (1998). Laboratory program to study clogging in a leachate collection system. Faculty of Graduate Studies, University of Western Ontario. ASTM (2010). Standard test methods for measurement of hydraulic conductivity of coarse-grained soils (ASTM D2434). ASTM Int. West Conshohocken, PA 10; 1-24. Bagchi, A. (2004). Design of landfills & integrated solid waste management. John Wiley & Sons, New Jersey. Baziene, K., Vasarevicius, S., & Siddiqui, A. A. (2012). Clogging test of landfill leachate drainage using different fillers. J. Environ. Eng. Landsc., 20(4); 301-306. Bian, X. L., & Liu, J. G. (2014). Influence factors in clogging of landfill leachate collection system. Adv. Mat. Res., 878; 631-637. Booker, J. R., Brachman, R., Quigley, R. M., & Rowe, R. K. (2004). Barrier systems for waste disposal facilities. CRC Press, London. Cossu, R., & Stegmann, R. (2019). Solid waste landfilling; Concepts, Processes, Technology. Elsevier, Amesterdam. Cunningham, A. B., Characklls, W. G., Abedeen, F., & Crawford, D. (1991). Influence of biofilm accumulation on porous media hydrodynamics. Environ. Sci. Technol., 25(7); 1305-1311. EPA (2001). Total, fixed, & volatile solids in water, solid, & biosolids (Method 1684). Office of Science & Technology, Engineering & Analysis Division, U.S. Environmental Protection Agency, Washington. EPA. (1993). Solid Waste Disposal Facility Criteria: Technical Manual 359. Office of Solid Waste & Emergency Response, U.S. Environmental Protection Agency, Washington. Fleming, I. R., & Rowe, R. K. (2004). Laboratory studies of clogging of landfill leachate collection & drainage systems. Can. Geotech. J., 41(1);134-153. Frikha, Y., Fellner, J., & Zairi, M. (2017). Leachate generation from landfill in a semi-arid climate: A qualitative & quantitative study from Sousse, Tunisia. Waste Manag. Res., 35(9); 940-948. Heidari, L., & Jalili Ghazizade, M. (2021). Recycling of spent industrial soil in manufacturing process of clay brick. Process Saf. Environ. Prot., 145; 133-140. Hoor, A., Rowe, R. K., & Pollard, A. (2008). A method for reducing the temperature of landfill liners in MSW landfills. In Proceedings of the 1st Global Waste Management Symposium, Copper Mountain Conference Center, CO (CD-ROM). Kaza, S., Yao, L. C., Bhada-Tata, P., & Van Woerden, F. (2018). What a waste 2.0: A Global Snapshot of Solid Waste Management to 2050. Urban Development, World Bank, Washington. Levine, A., Cardoso, A., Nayak, B., Rhea, L., & Dodge, B. (2005). Assessment of biogeochemical deposits in landfill leachate drainage systems. Project Final Report. Center for Solid & Hazardous Waste Management, Gainesville, Florida, USA. McIsaac, R., & Rowe, R. K. (2007). Clogging of gravel drainage layers permeated with landfill leachate. J. Geotech. Geol. Eng., 133(8); 1026-1039. Paksy, A., Powrie, W., Robinson, J. P., & Peeling, L. (1998). A laboratory investigation of anaerobic microbial clogging in granular landfill drainage media. Geotechnique, 48; 389-401. Ramke, H. G. (1986). Leachate collection systems. J. Environ. Eng., 112; 613-617. Renou, S., Givaudan, J. G., Poulain, S., Dirassouyan, F., & Moulin, P. (2008). Landfill leachate treatment: Review & opportunity. J. Hazard. Mater., 150; 468-493. Rinck-Pfeiffer, S., Ragusa, S., Sztajnbok, P., & Vandevelde, T. (2000). Interrelationships between biological, chemical, & physical processes as an analog to clogging in aquifer storage & recovery (ASR) wells. Water Res., 34(7); 2110-2118. Rowe, R. K., Abdelaal, F. B., & Brachman, R. W. I. (2015). Antioxidant depletion of HDPE geomembrane with sand protection layer. Geosynth. Int., 20(2); 73-89. Rowe, R. K., Armstrong, M. D., & Cullimore, D. R. (2000a). Particle size & clogging of granular media permeated with leachate. J. Geotech. Geol. Eng., 126(9); 775-786. Rowe, R. K., Armstrong, M. D., & Cullimore, D. R. (2000b). Mass loading & the rate of clogging due to municipal solid waste leachate. Can. Geotech. J., 37(2); 355-370. Rowe, R. K., & Hoor, A. (2009). Predicted temperatures & service lives of secondary geomembrane landfill liners. Geosynth. Int., 16(2); 71-82. Rowe, R. K., VanGulck, J. F., & Millward, S. C. (2002). Biologically induced clogging of a granular medium permeated with synthetic leachate. J. Environ. Eng. Sci., 1(2); 135-156. Rowe, R. K., & Yu, Y. (2013a). A practical technique for estimating service life of MSW leachate collection systems. Can. Geotech. J., 50(2);165-178. Rowe, R. K., & Yu, Y. (2013b). Modeling of leachate characteristics & clogging of gravel drainage mesocosms permeated with landfill leachate. J. Geotech. Geol. Eng., 139(7); 1022-1034. Rowe, R. K., & Yu, Y. (2010). Factors affecting the clogging of leachate collection systems in MSW landfills. In Proc. of the 6th International Congress on Environmental Geotechnics, New Delhi, (1); 3-23. Safari, E., Jalili Ghazizade, M., & Abdoli, M. A. (2012). A performance-based method for calculating the design thickness of compacted clay liners exposed to high strength leachate under simulated landfill conditions. Waste Manag. Res., 30(9); 898-907. Shariatmadari, N., Mansouri, A., & Zarrabi, M. (2011). Monitoring the temperature in a sanitary landfill in Tehran. In Geo-Frontiers: Advances in Geotechnical Engineering; 1016-1022. Sivakumar, D. (2013). Experimental & analytical model studies on leachate volume computation from solid waste. Int. J. Environ. Sci. Technol., 10; 903-916. Taylor, S. W., Milly, P. C. D., & Jaffe, P. R. (1990). Biofilm growth & the related changes in the physical properties of a porous medium: 2. Permeability. Water Resour. Res., 26(9); 2161-2169. Thullner, M., Zeyer, J., & Kinzelbach, W. (2002). Influence of microbial growth on hydraulic properties of pore networks. Transp. Porous Media, 49; 99-122. Townsend, T. G., Powell, J., Jain, P., Xu, Q., Tolaymat, T., & Reinhart, D. (2015). Sustainable practices for landfill design & operation. Springer, New York. Vandevivere, P., & Baveye, P. (1992). Saturated hydraulic conductivity reduction caused by aerobic bacteria in sand columns. Soil Sci. Soc. Am. J., 56; 1-13. VanGulck, J. F., & Rowe, R. K. (2004). Evolution of clog formation with time in columns permeated with synthetic landfill leachate. J. Contam. Hydrol., 75(1-2); 115-139. VanGulck, J. F., Rowe, R. K., Rittmann, B. E., & Cooke, A. J. (2003). Predicting biogeochemical calcium precipitation in landfill leachate collection systems. Biodegradation, 14; 331–346. Vieira, J. L., Abramento, M., & Campos, M. V. W. (2010). Experimental study of clogging in drainage systems. In Proceedings of the 9th International Conference on Geosynthetics, Guarujá, Brazil; 23-27. Wijekoon, P., Koliyabandara, P. A., Cooray, A. T., Lam, S. S., Athapattu, B. C. L., & Vithanage, M. (2022). Progress & prospects in mitigation of landfill leachate pollution: Risk, pollution potential, treatment & challenges. J. Hazard. Mater., 421; 12667. Yu, Y., & Rowe, R. K. (2012). Modelling leachate-induced clogging of porous media. Can. Geotech. J., 49(8); 877-890. | ||
آمار تعداد مشاهده مقاله: 268 تعداد دریافت فایل اصل مقاله: 559 |