تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,102,890 |
تعداد دریافت فایل اصل مقاله | 97,209,263 |
بررسی خطر آلودگی فلزات سنگین در رسوبات معلق وخاک سطحی (مطالعه موردی: حوزه لانیز، کرج) | ||
تحقیقات آب و خاک ایران | ||
دوره 53، شماره 12، اسفند 1401، صفحه 2937-2954 اصل مقاله (2.57 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2023.351189.669395 | ||
نویسندگان | ||
مسلم برجی حسن گاویار1؛ علی اکبر نظری سامانی* 2؛ سادات فیضنیا2؛ حسن فتحآبادی3 | ||
1گروه احیاء مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، تهران، ایران | ||
2گروه احیاء مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران، کرج، ایران. | ||
3گروه منابع طبیعی و کشاورزی، دانشکده منابع طبیعی، دانشگاه گنبد کاووس، گنبد کاووس، ایران. | ||
چکیده | ||
در این تحقیق محتوای فلزات سنگین (Zn، V، Ti، Pb، Ni، Mn، Cu، Cr و As) در 40 نمونه خاک و رسوب به همراه پنج نمونه رسوب معلق در آبراهههای حوزه لانیز کرج مورد بررسی قرار گرفت. با توجه به فعالیت عمرانی به ویژه احداث آزادراه تهران – شمال در این حوزه، شاخصهای آلودگی تک عنصره شامل Contamination Factor (CF)، شاخص زمین انباشتگی (Igeo) ، فاکتور غنی شدگی نرمال شده (EF) و فاکتور پتانسیل ریسک اکولوژیک تک عنصره (ER)؛ به همراه دو شاخص چند عنصر Pollution Load Index (PLI) و ریسک اکولوژیک (RI) استفاده شدند. همچنین از تحلیل مولفههای اصلی و آنالیز خوشهای برای گروه بندی عناصر و نمونهها استفاده شد. نتایج PCA نشان داد که دو گروه از عناصر با منشاء طبیعی و انسانی-طبیعی قابل تفکیک است. نتایج آنالیز خوشهای بیانگر تفکیک 50 درصد نمونههای مرتبط با آزادراه در دو خوشه مجزا میباشد. براساس شاخصهای CF، آلودگی شدید آرسنیک و سپس سرب و منگنز در نمونههای رسوب معلق و خاک مرتبط با آزادراه حاکم است. این آلودگی در شاخص Igeo برای آرسنیک نیز وجود دارد. همچنین براساس این شاخص اکثر نمونههای رسوب معلق مرتبط با آزادراه دارای کلاس شدید آلودگی از همه عناصر هستند. اما براساس شاخص غنی شدگی اصلاح شده با عنصر منگنز فقط یک نمونه متاثر و دو نمونه غیر متاثر از آزادراه دچار غنی شدگی شدید هستند و سایر نمونهها غنی شدگی کم یا متوسطی دارند. بر خلاف شاخصهای تک عنصره، در شاخصهای تجمعی PLI و RI نمونههای رسوب معلق و خاک مرتبط با آزادراه دارای بار آلودگی و ریسک اکولوژیک پایینی هستند. نتایج این تحقیق نشان داد که استفاده جداگانه از شاخصهای منفرد یا شاخصهای یکپارچه آلودگی نمیتواند واقعیت آن در حوزه را نشان دهد. | ||
کلیدواژهها | ||
فلزات سنگین؛ آلودگی؛ شاخص آلایندگی؛ ریسک اکولوژیک؛ آنالیز چند متغیره | ||
مراجع | ||
Ayyanar, A., & Thatikonda, S. (2021). Enhanced Electrokinetic Removal of Heavy Metals from a Contaminated Lake Sediment for Ecological Risk Reduction. Soil and Sediment Contamination: An International Journal, 30(1), 12-34.
Birch, G. F. (2017). Determination of sediment metal background concentrations and enrichment in marine environments–a critical review. Science of the total environment, 580, 813-831.
Castillo-Nava, D., Elias-Santos, M., López-Chuken, U. J., Valdés-González, A., de la Riva-Solís, L. G., Vargas-Pérez, M. P., ... & Luna-Olvera, H. A. (2020). Heavy metals (lead, cadmium and zinc) from street dust in Monterrey, Mexico: ecological risk index. International Journal of Environmental Science and Technology, 17(6), 3231-3240.
Dash, S., Borah, S. S., & Kalamdhad, A. S. (2021). Heavy metal pollution and potential ecological risk assessment for surficial sediments of Deepor Beel, India. Ecological Indicators, 122, 107265.
Desaules A (2012) Critical evaluation of soil contamination assessment methods for trace metals. Sci Total Environ 426:120–131
Dung, T. T. T., Cappuyns, V., Swennen, R., & Phung, N. K. (2013). From geochemical background determination to pollution assessment of heavy metals in sediments and soils. Reviews in Environmental Science and Bio/Technology, 12(4), 335-353.
Egbueri, J. C., & Enyigwe, M. T. (2020). Pollution and ecological risk assessment of potentially toxic elements in natural waters from the Ameka Metallogenic District in southeastern Nigeria. Analytical Letters, 53(17), 2812-2839.
Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental pollution, 114(3), 313-324.
Fathabadi, A., Selajeghe, A., Pezeshk, H., Nazari Samani, A.A., Rohani, H. (2016), Origination of suspended sediments and estimation of its uncertainty (case study: Zaydasht-Fashandak basin of Taleghan). Pasture and Watershed Journal, 70(1): 57-69. [In Persian]
Ghorbanzadeh zaferani, S. G., Hoseini tayefeh, F., Azimi, S., Gandomkar, M., & Badamfirooz, J. (2021). Environmental qualitative assessment of Karaj River sediments (Alborz Province). Iranian Scientific Fisheries Journal, 30(1), 37-52. doi: 10.22092/isfj.2021.123946 [In Persian]
Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water research, 14(8), 975-1001.
Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of environmental management, 92(10), 2355-2388.
Hassaan, M. A., El Nemr, A., & Madkour, F. F. (2016). Environmental assessment of heavy metal pollution and human health risk. American Journal of Water Science and Engineering, 2(3), 14-19.
Hou, D., O'Connor, D., Nathanail, P., Tian, L., & Ma, Y. (2017). Integrated GIS and multivariate statistical analysis for regional scale assessment of heavy metal soil contamination: A critical review. Environmental Pollution, 231, 1188-1200.
Huang, J., Li, F., Zeng, G., Liu, W., Huang, X., Xiao, Z., ... & He, Y. (2016). Integrating hierarchical bioavailability and population distribution into potential eco-risk assessment of heavy metals in road dust: A case study in Xiandao District, Changsha city, China. Science of the Total Environment, 541, 969-976.
Hu, Z., & Gao, S. (2008). Upper crustal abundances of trace elements: A revision and update. Chemical Geology, 253(3-4), 205-221.
Izah, S. C., Bassey, S. E., & Ohimain, E. I. (2018). Ecological risk assessment of heavy metals in cassava mill effluents contaminated soil in a rural community in the Niger Delta Region of Nigeria. Molecular Soil Biology, 9.
Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology, 7(2), 60.
Jeong, H., Choi, J. Y., Choi, D. H., Noh, J. H., & Ra, K. (2021). Heavy metal pollution assessment in coastal sediments and bioaccumulation on seagrass (Enhalus acoroides) of Palau. Marine Pollution Bulletin, 163, 111912.
Jorfi, S., Maleki, R., Jaafarzadeh, N., & Ahmadi, M. (2017). Pollution load index for heavy metals in Mian-Ab plain soil, Khuzestan, Iran. Data in brief, 15, 584-590.
Kamani, H., Mahvi, A. H., Seyedsalehi, M., Jaafari, J., Hoseini, M., Safari, G. H., ... & Ashrafi, S. D. (2017). Contamination and ecological risk assessment of heavy metals in street dust of Tehran, Iran. International journal of environmental science and technology, 14(12), 2675-2682.
Kaur, M., Kumar, A., Mehra, R., & Kaur, I. (2020). Quantitative assessment of exposure of heavy metals in groundwater and soil on human health in Reasi district, Jammu and Kashmir. Environmental geochemistry and health, 42(1), 77-94.
Kumar, A., & Kumar, V. (2018). Heavy metal pollution load in the sediment of the river mahananda within Katihar district, Bihar, India. International journal of basic and applied research, 8(11), 515-532.
Kumar, V., Sharma, A., Kaur, P., Sidhu, G. P. S., Bali, A. S., Bhardwaj, R., ... & Cerda, A. (2019). Pollution assessment of heavy metals in soils of India and ecological risk assessment: A state-of-the-art. Chemosphere, 216, 449-462.
Lim, K. Y., Zakaria, N. A., & Foo, K. Y. (2021). Geochemistry pollution status and ecotoxicological risk assessment of heavy metals in the Pahang River sediment after the high magnitude of flood event. Hydrology Research, 52(1), 107-124.
Linnik, P. M., & Zubenko, I. B. (2000). Role of bottom sediments in the secondary pollution of aquatic environments by heavy‐metal compounds. Lakes & Reservoirs: Research & Management, 5(1), 11-21.
Liu, D., Ma, J., Sun, Y., & Li, Y. (2016). Spatial distribution of soil magnetic susceptibility and correlation with heavy metal pollution in Kaifeng City, China. Catena, 139, 53-60.
Long, X., Liu, F., Zhou, X., Pi, J., Yin, W., Li, F., ... & Ma, F. (2021). Estimation of spatial distribution and health risk by arsenic and heavy metals in shallow groundwater around Dongting Lake plain using GIS mapping. Chemosphere, 269, 128698.
Ma, Y., Egodawatta, P., McGree, J., Liu, A., & Goonetilleke, A. (2016). Human health risk assessment of heavy metals in urban stormwater. Science of the Total Environment, 557, 764-772.
Martin, J. M., & Meybeck, M. (1979). Elemental mass-balance of material carried by major world rivers. Marine chemistry, 7(3), 173-206.
Miretzky, P., & Cirelli, A. F. (2010). Remediation of arsenic-contaminated soils by iron amendments: a review. Critical Reviews in Environmental Science and Technology, 40(2), 93-115.
Muller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. Geojournal, 2, 108-118.
Nosrati, K., & Collins, A. L. (2019). Investigating the importance of recreational roads as a sediment source in a mountainous catchment using a fingerprinting procedure with different multivariate statistical techniques and a Bayesian un-mixing model. Journal of hydrology, 569, 506-518.
Nosrati, K., Akbari-Mahdiabad, M., Fiener, P., & Collins, A. L. (2021). Using different size fractions to source fingerprint fine-grained channel bed sediment in a large drainage basin in Iran. CATENA, 200, 105173.
Ota, Y., Suzuki, A., Yamaoka, K., Nagao, M., Tanaka, Y., Irizuki, T., ... & Nishimura, O. (2021). Geochemical distribution of heavy metal elements and potential ecological risk assessment of Matsushima Bay sediments during 2012–2016. Science of The Total Environment, 751, 141825.
Paul, V., Sankar, M. S., Vattikuti, S., Dash, P., & Arslan, Z. (2021). Pollution assessment and land use land cover influence on trace metal distribution in sediments from five aquatic systems in southern USA. Chemosphere, 263, 128243.
Phillips, J. M., Russell, M. A., & Walling, D. E. (2000). Time‐integrated sampling of fluvial suspended sediment: a simple methodology for small catchments. Hydrological Processes, 14(14), 2589-2602.
Proshad, R., Kormoker, T., & Islam, S. (2021). Distribution, source identification, ecological and health risks of heavy metals in surface sediments of the Rupsa River, Bangladesh. Toxin reviews, 40(1), 77-101.
Rahmanian, M., & Safari, Y. (2020). Contamination factor and pollution load index to estimate source apportionment of selected heavy metals in soils around a cement factory, SW Iran. Archives of Agronomy and Soil Science.
Saxena, G., Purchase, D., Mulla, S. I., Saratale, G. D., & Bharagava, R. N. (2019). Phytoremediation of heavy metal-contaminated sites: eco-environmental concerns, field studies, sustainability issues, and future prospects. Reviews of Environmental Contamination and Toxicology Volume 249, 71-131.
Singh, M., Müller, G., & Singh, I. B. (2002). Heavy metals in freshly deposited stream sediments of rivers associated with urbanisation of the Ganga Plain, India. Water, Air, and Soil Pollution, 141(1), 35-54.
Taghipour, M., Ayoubi, S., & Khademi, H. (2011). Contribution of lithologic and anthropogenic factors to surface soil heavy metals in western Iran using multivariate geostatistical analyses. Soil and Sediment Contamination: An International Journal, 20(8), 921-937.
Trujillo-González, J. M., Torres-Mora, M. A., Keesstra, S., Brevik, E. C., & Jiménez-Ballesta, R. (2016). Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses. Science of the Total Environment, 553, 636-642.
Yan- Chu, H. (1994). Arsenic Distribution in Soils. In: Arsenic in The Environment, Part I,Cycling and Characterization, Ed. J. O. Nriagu, p. 17- 51.
Ukah, B. U., Egbueri, J. C., Unigwe, C. O., & Ubido, O. E. (2019). Extent of heavy metals pollution and health risk assessment of groundwater in a densely populated industrial area, Lagos, Nigeria. International Journal of Energy and Water Resources, 3(4), 291-303.
Weissmannová, H. D., & Pavlovský, J. (2017). Indices of soil contamination by heavy metals–methodology of calculation for pollution assessment (minireview). Environmental monitoring and assessment, 189(12), 1-25.
Wen, X., Lu, J., Wu, J., Lin, Y., & Luo, Y. (2019). Influence of coastal groundwater salinization on the distribution and risks of heavy metals. Science of the Total Environment, 652, 267-277.
Xiong, Q., Zhao, W., Zhao, J., Zhao, W., & Jiang, L. (2017). Concentration levels, pollution characteristics and potential ecological risk of dust heavy metals in the metropolitan area of beijing, china. International journal of environmental research and public health, 14(10), 1159.
Yujun, Y. I., Zhaoyin, W., Zhang, K., Guoan, Y. U., & Xuehua, D. (2008). Sediment pollution and its effect on fish through food chain in the Yangtze River. International Journal of Sediment Research, 23(4), 338-347.
Zare Chahoki, M.A. (2011). Data analysis in natural resources research with SPSS software. Academic Jihad Publications, Tehran branch. 310 p. [In Persian]
Zhang, L., & Liu, J. (2014). In situ relationships between spatial–temporal variations in potential ecological risk indexes for metals and the short-term effects on periphyton in a macrophyte-dominated lake: a comparison of structural and functional metrics. Ecotoxicology, 23(4), 553-566.
Zhao, S., Feng, C., Yang, Y., Niu, J., & Shen, Z. (2012). Risk assessment of sedimentary metals in the Yangtze Estuary: New evidence of the relationships between two typical index methods. Journal of hazardous materials, 241, 164-172.
Qi, S., Leipe, T., Rueckert, P., Di, Z., & Harff, J. (2010). Geochemical sources, deposition and enrichment of heavy metals in short sediment cores from the Pearl River Estuary, Southern China. Journal of marine systems, 82, S28-S42. | ||
آمار تعداد مشاهده مقاله: 213 تعداد دریافت فایل اصل مقاله: 234 |