تعداد نشریات | 161 |
تعداد شمارهها | 6,533 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,124,427 |
تعداد دریافت فایل اصل مقاله | 97,232,963 |
Identification and Quantification of Antibiotic Residues and Evaluation of Microbial Resistance to Antibiotics in Huatanay River Waters in Peru | ||
Pollution | ||
دوره 9، شماره 3، مهر 2023، صفحه 1236-1250 اصل مقاله (706.88 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2023.352228.1718 | ||
نویسندگان | ||
Tatiana Del Castillo De Loayza1؛ Ingrid Maldonado2؛ Franz Zirena Vilca* 3 | ||
1Departamento Académico de Farmacia, Facultad de Ciencias de la Salud. UNSAAC, Cusco, Perú | ||
2Programa de Doctorado en Ciencia, Tecnología y Medio Ambiente, Escuela de Posgrado, Universidad Nacional del Altiplano de Puno, Av. Floral N° 1153, Puno, Perú | ||
3Laboratorio de Contaminantes Orgánicos y Ambiente del IINDEP de la Universidad Nacional de Moquegua, Perú, Urb Ciudad Jardín-Pacocha-Ilo, Perú | ||
چکیده | ||
The Huatanay River in Cusco-Peru, is affected by wastewater discharges along its course. In order to evaluate this impact, we evaluate antibiotic residues and their impact on the increase of bacterial resistance in the city of Cusco treatment plant. For this purpose, water samples from the influent and effluent of the treatment plant were analyzed by chromatographic methods; additionally, sensitivity tests were performed with three bacterial strains (Escherichia coli, Salmonella sp., and Klebsiella sp.), which were isolated from the same place. Six antibiotic residues were identified (ceftriaxone, amoxicillin, trimethoprim, sulfamethoxazole, dicloxacillin, and lincomycin). Those found in the highest concentration were: amoxicillin (91495 and 0 µg/L) and lincomycin (33970 and 10800 µg/L) in the influent and effluent, respectively. There is more resistance in the effluent than the influent in the case of E. coli shows resistance in the effluent to cephalexin (30 µg) and azithromycin (15 µg). Salmonella sp. is resistant to amoxicillin (15 µg), dicloxacillin (1 µg), lincomycin (2 µg), ceftriaxone (30 µg), cephalexin (30 µg), and ciprofloxacin (5 µg). Finally, Klebsiella sp. is sensitive to ceftriaxone (30 µg), amoxicillin (15 µg), and cephalexin (30 µg). This confirms that the antibiotic residues contained in the wastewater of Cusco generate resistance in the isolated bacteria. | ||
کلیدواژهها | ||
Bacteria resistance؛ Chromatography؛ Emerging pollutants؛ Environmental Health؛ Pollution؛ Solid phase xtraction؛ wastewater | ||
مراجع | ||
Almeida, C. M. R., Santos, F., Ferreira, A. C. F., Lourinha, I., Basto, M. C. P., & Mucha, A. P. (2017). Can veterinary antibiotics affect constructed wetlands performance during treatment of livestock wastewater?. Ecol. Eng. 102, 583-588. doi:10.1016/j.ecoleng.2017.02.035. Ao, X., Liu, W., Sun, W., Cai, M., Ye, Z., Yang, C., ... & Li, C. (2018). Medium pressure UV-activated peroxymonosulfate for ciprofloxacin degradation: Kinetics, mechanism, & genotoxicity. Chem. Eng. J. 345, 87-97. doi:10.1016/j.cej.2018.03.133. APHA (2017). Standard Methods for the Examination of Water & Wastewater 23rd edition. 23.a ed. Washington D.C. Archundia, D., Duwig, C., Lehembre, F., Chiron, S., Morel, M. C., Prado, B., ... & Martins, J. M. F. (2017). Antibiotic pollution in the Katari subcatchment of the Titicaca Lake: Major transformation products & occurrence of resistance genes. Sci. Total Environ. 576, 671-682. doi:10.1016/j.scitotenv.2016.10.129. Ben, Y., Fu, C., Hu, M., Liu, L., Wong, M. H., & Zheng, C. (2019). Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. Environ. Res. 169, 483-493. doi:10.1016/j.envres.2018.11.040. Bhattacharjee, M. K. (2016). Chemistry of Antibiotics & Related Drugs. , ed. Springer Cham: Springer International Publishing doi:10.1007/978-3-319-40746-3. Binh, V. N., Dang, N., Thi, N., Anh, K., Ky, L. X., & Thai, P. K. (2018). Antibiotics in the aquatic environment of Vietnam: Sources, concentrations, risk & control strategy. Chemosphere 197, 438-450. doi:10.1016/j.chemosphere.2018.01.061. Carmona, E., Andreu, V., & Picó, Y. (2017). Multi-residue determination of 47 organic compounds in water, soil, sediment & fish—Turia River as case study. J. Pharm. Biomed. Anal. 146, 117-125. doi:10.1016/j.jpba.2017.08.014. Carvalho, I. T., & Santos, L. (2016). Antibiotics in the aquatic environments: A review of the European scenario. Environ. Int. 94, 736-757. doi:10.1016/j.envint.2016.06.025. Cavalieri, S. J., Harbeck, R. J., McCarter, Y. S., Ortez, J. H., Rankin, I. D., Sautter, R. L., ... & Spiegel, C. A. (2005). Manual de pruebas de susceptibilidad antimicrobiana. Seattle: University of Washington. Available at: https://www.paho.org/hq/dmdocuments/2005/susceptibilidad-antimicrobiana-manual-pruebas-2005.pdf. Chabilan, A., Landwehr, N., Horn, H., & Borowska, E. (2022). Impact of log(Kow) Value on the Extraction of Antibiotics from River Sediments with Pressurized Liquid Extraction. Water (Switzerland) 14, 2534. doi:10.3390/W14162534/S1. Chen, J. (2014). Removal of antibiotics & antibiotic resistance genes in rural wastewater by an integrated constructed wetland. Environ. Sci. Pollut. Res. 22, 1794–1803. doi:10.1007/s11356-014-2800-4. Dires, S., Birhanu, T., Ambelu, A., & Sahilu, G. (2018). Antibiotic resistant bacteria removal of subsurface flow constructed wetlands from hospital wastewater. J. Environ. Chem. Eng. 6, 4265-4272. doi:10.1016/j.jece.2018.06.034. Diwan, V., Tamhankar, A. J., Khandal, R. K., Sen, S., Aggarwal, M., Marothi, Y., ... & Stålsby-Lundborg, C. (2010). Antibiotics & antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC public health, 10(1), 1-8. 10, 414. doi:10.1186/1471-2458-10-414. FDA (2022). Bacteriological Analytical Manual (BAM). FDA. Available at: https://www.fda.gov/food/laboratory-methods-food/bacteriological-analytical-manual-bam [Accedido septiembre 13, 2022]. Forestieri, S., Pintus, R., Marcialis, M. A., Pintus, M. C., & Fanos, V. (2021). COVID-19 & developmental origins of health & disease. Early Hum. Dev. 155, 105322. doi:10.1016/j.earlhumdev.2021.105322. Geramizadegan, A., Ghazanfari, D., & Amiri, A. (2022). Determination of amount herbicide toxic fenpyroximate in surface water by analysis molecularly imprinted solid phase extraction method & relative error assessment using artificial neural network model. https://doi.org/10.1080/03067319.2021.2001465, 1-18. doi:10.1080/03067319.2021.2001465. Gonzalez-Zorn, B. (2021). Antibiotic use in the COVID-19 crisis in Spain. Clin. Microbiol. Infect. 27, 646-647. doi:10.1016/j.cmi.2020.09.055. Gozzo, S., Moles, S., Kińska, K., Ormad, M. P., Mosteo, R., Gómez, J., ... & Szpunar, J. (2022). Screening for Antibiotics & Their Degradation Products in Surface & Wastewaters of the POCTEFA Territory by Solid-Phase Extraction-UPLC-Electrospray MS/MS. Water (Switzerland) 15. doi:10.3390/w15010014. Haddad, T., Baginska, E., & Kümmerer, K. (2015). Transformation products of antibiotic & cytostatic drugs in the aquatic cycle that result from effluent treatment & abiotic/biotic reactions in the environment: An increasing challenge calling for higher emphasis on measures at the beginning of the pipe. Water Res. 72, 75-126. doi:10.1016/J.WATRES.2014.12.042. Harrabi, M., Varela Della Giustina, S., Aloulou, F., Rodriguez-Mozaz, S., Barceló, D., & Elleuch, B. (2018). Analysis of multiclass antibiotic residues in urban wastewater in Tunisia. Environ. Nanotechnology, Monit. Manag. 10, 163-170. doi:10.1016/j.enmm.2018.05.006. Hartinger, S. M., Medina-Pizzali, M. L., Salmon-Mulanovich, G., Larson, A. J., Pinedo-Bardales, M., Verastegui, H., ... & Mäusezahl, D. (2021). Antimicrobial resistance in humans, animals, water & household environs in rural andean peru: Exploring dissemination pathways through the one health lens. Int. J. Environ. Res. Public Health 18, 4604. doi:10.3390/IJERPH18094604/S1. Kumar, M., Jaiswal, S., Sodhi, K. K., Shree, P., Singh, D. K., Agrawal, P. K., & Shukla, P. (2019). Antibiotics bioremediation: perspectives on its ecotoxicity & resistance. Environ. Int. 124, 448-461. doi:10.1016/j.envint.2018.12.065. Larson, A., Hartinger, S. M., Riveros, M., Salmon-Mulanovich, G., Hattendorf, J., Verastegui, H., ... & Mäusezahl, D. (2019). Antibiotic-resistant Escherichia coli in drinking water samples from rural Andean households in Cajamarca, Peru. Am.J. Trop. Med. Hyg. 100, 1363-1368. doi:10.4269/ajtmh.18-0776. Lehutso, R. F., Daso, A. P., & Okonkwo, J. O. (2017). Occurrence & environmental levels of triclosan & triclocarban in selected wastewater treatment plants in Gauteng Province, South Africa. Emerg. Contam. 3, 107-114. doi:10.1016/j.emcon.2017.07.001. Liu, Y., Chen, Y., Feng, M., Chen, J., Shen, W., & Zhang, S. (2021). Occurrence of antibiotics & antibiotic resistance genes & their correlations in river-type drinking water source, China. Environ. Sci. Pollut. Res. 28, 42339-42352. doi:10.1007/s11356-021-13637-8. Lopes, T. R., Costa, I. L., Periotto, F., & Pletsch, A. L. (2016). Antibiotic resistance in E. coli isolated in effluent from a wastewater treatment plant & sediments in receiver body. Int. J. River Basin Manag. 14, 441-445. doi:10.1080/15715124.2016.1201094. Loudermilk, E. M., Kotay, S. M., Barry, K. E., Parikh, H. I., Colosi, L. M., & Mathers, A. J. (2022). Tracking Klebsiella pneumoniae carbapenemase gene as an indicator of antimicrobial resistance dissemination from a hospital to surface water via a municipal wastewater treatment plant. Water Res. 213, 118151. doi:10.1016/j.watres.2022.118151. Maldonado, I., Moreno, E. G., & Zirena, F. (2022). Application of duckweed (Lemna sp.) & water fern (Azolla sp.) in the removal of pharmaceutical residues in water : State of art focus on antibiotics. Sci. Total Environ. 838, 156565. doi:10.1016/j.scitotenv.2022.156565. Masarikova, M., Manga, I., Cizek, A., Dolejska, M., Oravcova, V., Myskova, P., ... & Literak, I. (2016). Salmonella enterica resistant to antimicrobials in wastewater effluents & black-headed gulls in the Czech Republic, 2012. Sci. Total Environ. 542, 102-107. doi:10.1016/j.scitotenv.2015.10.069. Masco, M. L. (2017). Determinación de contaminantes tensioactivos tipo ácido dodecilbenceno sulfónico lineal en aguas del Río Huatanay - Cusco. Repos. Inst. UNA-Puno, 1-125. MINAM (2017). Estandares de Calidad Ambiental (ECA) para Agua. El Peru., 6-9. Available at: http://www.minam.gob.pe/wp-content/uploads/2017/06/DS-004-2017-MINAM.pdf. MINSA (2007). Protocolo de monitoreo de la calidad sanitaria de los recursos hídricos superficiales. Mohammad, R. E. A., Elbashir, A. A., Karim, J., Yahaya, N., Rahim, N. Y., & Miskam, M. (2021). Adsorptive performances of magnetic graphene oxide adsorbent for the removal of fluoroquinolones in the Langat River Basin, Malaysia. https://doi.org/10.1080/03067319.2021.1957464, 1-21. doi:10.1080/03067319.2021.1957464. Nieto-Juarez, J., Torres-Palma, R., Botero-Coy, A., & Hernández, F. (2021). Pharmaceuticals & environmental risk assessment in municipal wastewater treatment plants & rivers from Peru. Environ. Int. J. 155, 106674. doi:https://doi.org/10.1016/j.envint.2021.106674. Novo, A., André, S., Viana, P., Nunes, O. C., & Manaia, C. M. (2013). Antibiotic resistance, Antimicrobial residues & bacterial community composition in urban wastewater. Water Res. 47, 1875-1887. doi:10.1016/j.watres.2013.01.010. Palhares, J. C. P., Kich, J. D., Bessa, M. C., Biesus, L. L., Berno, L. G., & Triques, N. J. (2014). Salmonella & antimicrobial resistance in an animal-based agriculture river system. Sci. Total Environ. 472, 654-661. doi:10.1016/j.scitotenv.2013.11.052. Pournamdari, E., & Geramizadegan, A. (2023). Assessment & Selective Extraction Megestrol Drug by Molecularly Imprinted Polymers Method in Human Fluid Samples Using Liquid Chromatography. Int. J. Obstet. Anesth. 10, 169-182. doi:10.1054/ijoa.2001.0838. Reichert, G., Hilgert, S., Fuchs, S., & Azevedo, J. C. R. (2019). Emerging contaminants & antibiotic resistance in the different environmental matrices of Latin America. Environ. Pollut. 255, 113140. doi:10.1016/j.envpol.2019.113140. Rivera-Gutiérrez, E., Ramírez-García, J. J., Pavón Romero, S. H., Rodríguez, M. M., Ramírez-Serrano, A., & Jiménez-Marin, A. (2020). Dicloxacillin Degradation with Free-Living Bacteria. Water. Air. Soil Pollut. 231, 1-13. doi:10.1007/s11270-020-4456-7. Rodriguez-Mozaz, S., Vaz-Moreira, I., Della Giustina, S. V., Llorca, M., Barceló, D., Schubert, S., ... & Manaia, C. M. (2020). Antibiotic residues in final effluents of European wastewater treatment plants & their impact on the aquatic environment. Environ. Int. 140, 105733. doi:10.1016/j.envint.2020.105733. Sakkas, H., Bozidis, P., Ilia, A., Mpekoulis, G., & Papadopoulou, C. (2019). Antimicrobial resistance in bacterial pathogens & detection of carbapenemases in Klebsiella pneumoniae isolates from hospital wastewater. Antibiotics 8, 1-12. doi:10.3390/antibiotics8030085. Santiago, P., Jiménez-Belenguer, A., García-Hernández, J., Estellés, R. M., Pérez, M. H., López, M. A. C., ... & Moreno, Y. (2018). High prevalence of Salmonella spp. in wastewater reused for irrigation assessed by molecular methods. Int. J. Hyg. Environ. Health 221, 95-101. doi:10.1016/j.ijheh.2017.10.007. Sarafraz, M., Ali, S., Sadani, M., Heidarinejad, Z., Bay, A., Fakhri, Y., & Mousavi Khaneghah, A. (2022). A global systematic, review-meta analysis & ecological risk assessment of ciprofloxacin in river water.Int. J. Environ. Anal. Chem. 102, 1-15. doi:10.1080/03067319.2020.1791330. Wang, H., Qu, B., Liu, H., Ding, J., & Ren, N. (2018). Fast determination of β-endosulfan, α-hexachlorocyclohexane & pentachlorobenzene in the river water from northeast of China. Int. J. Environ. Anal. Chem. 98, 413-428. doi:10.1080/03067319.2018.1475563. Zhang, C. M., Xu, L. M., Mou, X., Xu, H., Liu, J., Miao, Y. H., ... & Li, X. (2019). Characterization & evolution of antibiotic resistance of Salmonella in municipal wastewater treatment plants. J. Environ. Manage. 251, 109547. doi:10.1016/j.jenvman.2019.109547. Zhang, Y., Qu, C., Qi, S., Zhang, Y., Mao, L., Liu, J., ... & Yang, D. (2021). Spatial-temporal variations & transport process of polycyclic aromatic hydrocarbons in Poyang Lake: Implication for dry–wet cycle impacts. J. Geochemical Explor. 226, 106738. doi:10.1016/j.gexplo.2021.106738. | ||
آمار تعداد مشاهده مقاله: 649 تعداد دریافت فایل اصل مقاله: 698 |