- Adnan, R. M., Liang, Z., Parmar, K. S., Soni, K., & Kisi, O. (2021). Modeling monthly streamflow in mountainous basin by MARS, GMDH-NN and DENFIS using hydroclimatic data. Neural Computing and Applications, 33(7), 2853-2871.
- Aminyavari, S., & Saghafian, B. (2019). Probabilistic streamflow forecast based on spatial post-processing of TIGGE precipitation forecasts. Stochastic Environmental Research and Risk Assessment, 33(11), 1939-1950.
- Aminyavari, S., Saghafian, B., & Sharifi, E. (2019). Assessment of precipitation estimation from the NWP models and satellite products for the spring 2019 severe floods in Iran. Remote Sensing, 11(23), 2741.
- Chang, F. J., & Hwang, Y. Y. (1999). A self‐organization algorithm for real‐time flood forecast. Hydrological processes, 13(2), 123-138.
- Chen, C. H., Chung, K. S., Yang, S. C., Chen, L. H., Lin, P. L., & Torn, R. D. (2021). Sensitivity of forecast uncertainty to different microphysics schemes within a convection-allowing ensemble during SoWMEX-IOP8. Monthly Weather Review, 149(12), 4145-4166.
- Chen, M., Huang, Y., Li, Z., Larico, A. J. M., Xue, M., Hong, Y., ... & Morales, I. Y. (2022). Cross-Examining Precipitation Products by Rain Gauge, Remote Sensing, and WRF Simulations over a South American Region across the Pacific Coast and Andes. Atmosphere, 13(10), 1666.
- D’onofrio, A., Boulanger, J. P., & Segura, E. C. (2010). CHAC: a weather pattern classification system for regional climate downscaling of daily precipitation. Climatic Change, 98(3), 405-427.
- Du, Y., Wang, Q. J., Wu, W., & Yang, Q. (2022). Power transformation of variables for post-processing precipitation forecasts: regionally versus locally optimized parameter values. Journal of Hydrology, 127912.
- Fallah Kalaki, M., Delavar, M., & Farokhnia, A. (2020). Continuous and probabilistic Assessment of Long-term Precipitation Forecast of North American Multi Model Ensemble (Case Study: Karkheh Dam Basin). Iran-Water Resources Research, 16(1), 59-71. (In Persian)
- Gilewski, P. (2022). Application of Global Environmental Multiscale (GEM) Numerical Weather Prediction (NWP) Model for Hydrological Modeling in Mountainous Environment. Atmosphere, 13(9), 1348.
- Hagedorn, R., Doblas-Reyes, F. J., & Palmer, T. N. (2005). The rationale behind the success of multi-model ensembles in seasonal forecasting-I. Basic concept. Tellus A: Dynamic Meteorology and Oceanography, 57(3), 219-233.
- Hapuarachchi, H. A. P., Wang, Q. J., & Pagano, T. C. (2011). A review of advances in flash flood forecasting. Hydrological processes, 25(18), 2771-2784.
- Jahanara, A. A., & Khodashenas, S. R. (2019). Prediction of ground water table using NF-GMDH based evolutionary algorithms. KSCE Journal of Civil Engineering, 23(12), 5235-5243.
- Jain, S.K., Mani, P., Jain, S.K., Prakash, P., Singh, V.P., Tullos, D., Kumar, S., Agarwal, S.P. and Dimri, A.P., (2018). A Brief review of flood forecasting techniques and their applications. International Journal of River Basin Management, 16(3), 329-344.
- Javanshiri, Z., Fathi, M., & Mohammadi, S. A. (2021). Comparison of the BMA and EMOS statistical methods for probabilistic quantitative precipitation forecasting. Meteorological Applications, 28(1), e1974.
- Jha, S. K., Shrestha, D. L., Stadnyk, T. A., & Coulibaly, P. (2018). Evaluation of ensemble precipitation forecasts generated through post-processing in a Canadian catchment. Hydrology and Earth System Sciences, 22(3), 1957-1969.
- Kardan Moghaddam, H., Ghordoyee Milan, S., Kayhomayoon, Z., & Arya Azar, N. (2021). The prediction of aquifer groundwater level based on spatial clustering approach using machine learning. Environmental Monitoring and Assessment, 193(4), 1-20.
- Krishnamurti, T. N., Sagadevan, A. D., Chakraborty, A., Mishra, A. K., & Simon, A. (2009). Improving multimodel weather forecast of monsoon rain over China using FSU superensemble. Advances in Atmospheric Sciences, 26(5), 813-839.
- Liguori, S., Rico-Ramirez, M. A., Schellart, A. N. A., & Saul, A. J. (2012). Using probabilistic radar rainfall nowcasts and NWP forecasts for flow prediction in urban catchments. Atmospheric Research, 103, 80-95.
- Liu, Y. Y., Li, L., Liu, Y. S., Chan, P. W., Zhang, W. H., & Zhang, L. (2021). Estimation of precipitation induced by tropical cyclones based on machine‐learning‐enhanced analogue identification of numerical prediction. Meteorological Applications, 28(2), e1978.
- Maddah, M. A., Akhoond-Ali, A. M., Ahmadi, F., Ghafarian, P., & Rusin, I. N. (2021). Forecastability of a heavy precipitation event at different lead-times using WRF model: the case study in Karkheh River basin. Acta Geophysica, 69(5), 1979-1995.
- Malekmohammadi, B., Zahraie, B. and Kerachian, R., 2010. A real-time operation optimization model for flood management in river-reservoir systems. Natural hazards, 53(3), 459-482.
- Manzanas, R., Gutiérrez, J. M., Bhend, J., Hemri, S., Doblas-Reyes, F. J., Torralba, V., ... & Brookshaw, A. (2019). Bias adjustment and ensemble recalibration methods for seasonal forecasting: a comprehensive intercomparison using the C3S dataset. Climate Dynamics, 53(3), 1287-1305.
- Medina, H., Tian, D., Marin, F. R., & Chirico, G. B. (2019). Comparing GEFS, ECMWF, and post-processing methods for ensemble precipitation forecasts over Brazil. Journal of Hydrometeorology, 20(4), 773-790.
- Mehri, Y., Soltani, J., & Khashehchi, M. (2019). Predicting the coefficient of discharge for piano key side weirs using GMDH and DGMDH techniques. Flow Measurement and Instrumentation, 65, 1-6.
- Osman, M., Coelho, C. A., & Vera, C. S. (2021). Calibration and combination of seasonal precipitation forecasts over South America using Ensemble Regression. Climate Dynamics, 57(9), 2889-2904.
- Pakdaman, M., Babaeian, I., & Bouwer, L. M. (2022). Improved Monthly and Seasonal Multi-Model Ensemble Precipitation Forecasts in Southwest Asia Using Machine Learning Algorithms. Water, 14(17), 2632.
- Roy, J., & Saha, S. (2022). Ensemble hybrid machine learning methods for gully erosion susceptibility mapping: K-fold cross validation approach. Artificial Intelligence in Geosciences, 3, 28-45.
- Saedi, A., Saghafian, B., Moazami, S., & Aminyavari, S. (2020). Performance evaluation of sub‐daily ensemble precipitation forecasts. Meteorological Applications, 27(1), e1872.
- Safari, M. J. S., Ebtehaj, I., Bonakdari, H., & Es-haghi, M. S. (2019). Sediment transport modeling in rigid boundary open channels using generalize structure of group method of data handling. Journal of Hydrology, 577, 123951.
- Samadi, A., Sadrolashrafi, S. S., & Kholghi, M. K. (2019). Development and testing of a rainfall-runoff model for flood simulation in dry mountain catchments: A case study for the Dez River Basin. Physics and Chemistry of the Earth, Parts A/B/C, 109, 9-25.
- Shaghaghi, S., Bonakdari, H., Gholami, A., Ebtehaj, I., & Zeinolabedini, M. (2017). Comparative analysis of GMDH neural network based on genetic algorithm and particle swarm optimization in stable channel design. Applied Mathematics and Computation, 313, 271-286.
- Sikder, M. S., & Hossain, F. (2018). Sensitivity of initial‐condition and cloud microphysics to the forecasting of monsoon rainfall in South Asia. Meteorological Applications, 25(4), 493-509.
- Tanhapour, M., Hlavčová, K., Soltani, J., Liová, A., Malekmohammadi, B. (2022). Sensitivity analysis and assessment of the performance of the HBV hydrological model for simulating reservoir inflow hydrograph. In: Proceeding of 16th annual international scientific conference, 1-3 June, Banská Štiavnica, Slovakia, 115-124.
- Tao, Y., Duan, Q., Ye, A., Gong, W., Di, Z., Xiao, M., & Hsu, K. (2014). An evaluation of post-processed TIGGE multimodel ensemble precipitation forecast in the Huai river basin. Journal of hydrology, 519, 2890-2905.
- Theocharides, S., Makrides, G., Livera, A., Theristis, M., Kaimakis, P., & Georghiou, G. E. (2020). Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing. Applied Energy, 268, 115023.
- Verkade, J. S., Brown, J. D., Reggiani, P., & Weerts, A. H. (2013). Post-processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales. Journal of Hydrology, 501, 73-91.
- Walton, R., Binns, A., Bonakdari, H., Ebtehaj, I. and Gharabaghi, B., (2019). Estimating 2-year flood flows using the generalized structure of the Group Method of Data Handling. Journal of Hydrology, 575, 671-689
- Wang, H., Hu, Y., Guo, Y., Wu, Z., & Yan, D. (2022). Urban flood forecasting based on the coupling of numerical weather model and stormwater model: A case study of Zhengzhou city. Journal of Hydrology: Regional Studies, 39, 100985.
- Wei, X., Sun, X., Sun, J., Yin, J., Sun, J., & Liu, C. (2022). A Comparative Study of Multi-Model Ensemble Forecasting Accuracy between Equal-and Variant-Weight Techniques. Atmosphere, 13(4), 526.
- Wu, W., Emerton, R., Duan, Q., Wood, A.W., Wetterhall, F. and Robertson, D.E., (2020). Ensemble flood forecasting: Current status and future opportunities. Wiley Interdisciplinary Reviews: Water, 7(3), 1432.
- Zakeri, Z., azadi, M., & sahraeiyan, F. (2014). Verification of WRF forecasts for precipitation over Iran in the period Feb-May 2009. Nivar, 38(87-86), 3-10. (In Persian)
|